Difference between revisions of "2013 AMC 10A Problems/Problem 23"

Line 12: Line 12:
  
 
==Solution 2==
 
==Solution 2==
Let <math>x</math> represent <math>BX</math>, and let <math>y</math> represent <math>CX</math>. Since the circle goes through <math>B</math> and <math>X</math>, <math>AB</math> = <math>AX</math> = 86.
+
Let <math>x</math> represent <math>BX</math>, and let <math>y</math> represent <math>CX</math>. Since the circle goes through <math>B</math> and <math>X</math>, <math>AB = AX = 86</math>.
 
Then by Stewart's Theorem,
 
Then by Stewart's Theorem,
  
Line 21: Line 21:
 
<math>x^2 + xy + 86^2 = 97^2</math>
 
<math>x^2 + xy + 86^2 = 97^2</math>
  
(Since <math>y</math> cannot be equal to 0, dividing both sides of the equation by <math>y</math> is allowed.)
+
(Since <math>y</math> cannot be equal to <math>0</math>, dividing both sides of the equation by <math>y</math> is allowed.)
  
 
<math>x(x+y) = (97+86)(97-86)</math>
 
<math>x(x+y) = (97+86)(97-86)</math>
Line 27: Line 27:
 
<math>x(x+y) = 2013</math>
 
<math>x(x+y) = 2013</math>
  
The prime factors of 2013 are 3, 11, and 61. Obviously, <math>x < x+y</math>. In addition, by the Triangle Inequality, <math>BC < AB + AC</math>, so <math>x+y < 183</math>. Therefore, <math>x</math> must equal 33, and <math>x+y</math> must equal 61. <math>\boxed{D}</math>
+
The prime factors of <math>2013</math> are <math>3</math>, <math>11</math>, and <math>61</math>. Obviously, <math>x < x+y</math>. In addition, by the Triangle Inequality, <math>BC < AB + AC</math>, so <math>x+y < 183</math>. Therefore, <math>x</math> must equal <math>33</math>, and <math>x+y</math> must equal <math> \boxed{\textbf{(D) }61}</math>
  
  

Revision as of 23:12, 9 February 2013

Problem

In $\triangle ABC$, $AB = 86$, and $AC=97$. A circle with center $A$ and radius $AB$ intersects $\overline{BC}$ at points $B$ and $X$. Moreover $\overline{BX}$ and $\overline{CX}$ have integer lengths. What is $BC$?


$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 61\qquad\textbf{(E)}\ 72$

Solution 1

Let $BX = q$, $CX = p$, and $AC$ meet the circle at $Y$ and $Z$, with $Y$ on $BC$. Then $AZ = AY = 86$. Using the Power of a Point, we get that $p(p+q) = 11(183) = 11 * 3 * 61$. We know that $p+q>p$, and that $p>13$ by the triangle inequality on $\triangle ACX$. Thus, we get that $BC = p+q = \boxed{\textbf{(D) }61}$

Solution 2

Let $x$ represent $BX$, and let $y$ represent $CX$. Since the circle goes through $B$ and $X$, $AB = AX = 86$. Then by Stewart's Theorem,

$xy(x+y) + 86^2 (x+y) = 97^2 y + 86^2 x.$

$x^2 y + xy^2 + 86^2 x + 86^2 y = 97^2 y + 86^2 x$

$x^2 + xy + 86^2 = 97^2$

(Since $y$ cannot be equal to $0$, dividing both sides of the equation by $y$ is allowed.)

$x(x+y) = (97+86)(97-86)$

$x(x+y) = 2013$

The prime factors of $2013$ are $3$, $11$, and $61$. Obviously, $x < x+y$. In addition, by the Triangle Inequality, $BC < AB + AC$, so $x+y < 183$. Therefore, $x$ must equal $33$, and $x+y$ must equal $\boxed{\textbf{(D) }61}$


See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions