Difference between revisions of "2013 AMC 10A Problems/Problem 25"

m (Solution 3 (Answer choices and reasoning))
(Solution 3 (Answer choices and reasoning))
Line 55: Line 55:
 
We know that the amount of intersection points is at most <math>\dbinom{8}{4} = 70</math>, as in solution <math>2</math>. There's probably going to be more than <math>5</math> intersections counted multiple times (to get <math>\textbf{(B) }65</math>), leading us to the only reasonable answer, <math>\boxed{\textbf{(A) }49}</math>.
 
We know that the amount of intersection points is at most <math>\dbinom{8}{4} = 70</math>, as in solution <math>2</math>. There's probably going to be more than <math>5</math> intersections counted multiple times (to get <math>\textbf{(B) }65</math>), leading us to the only reasonable answer, <math>\boxed{\textbf{(A) }49}</math>.
 
-Lcz
 
-Lcz
 +
Note: You can easily prove this by looking at the simple case of the diagonals intersecting in the middle of the octagon.  4<math> "major" diagonals intersect here and only 1</math> intersection point is counted so you can subtract 3<math> from 70.  Then look to the "middle" ring where certainly more than 2</math> intersections are formed by the intersection of 3$ diagonals(a rough diagram is really enough).
  
 
==Solution 4 (Drawing but easier)==
 
==Solution 4 (Drawing but easier)==

Revision as of 13:29, 30 December 2020

Problem

All $20$ diagonals are drawn in a regular octagon. At how many distinct points in the interior of the octagon (not on the boundary) do two or more diagonals intersect?

$\textbf{(A)}\ 49\qquad\textbf{(B)}\ 65\qquad\textbf{(C)}\ 70\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 128$

Solution 1 (Drawing)

If you draw a clear diagram like the one below, it is easy to see that there are $\boxed{\textbf{(A) }49}$ points.

[asy] size(14cm); pathpen = brown + 1.337; // Initialize octagon pair[] A; for (int i=0; i<8; ++i) { A[i] = dir(45*i); } D(CR( (0,0), 1)); // Draw diagonals // choose pen colors pen[] colors; colors[1] = orange + 1.337; colors[2] = purple; colors[3] = green; colors[4] = black; for (int d=1; d<=4; ++d) { pathpen = colors[d]; for (int j=0; j<8; ++j) { D(A[j]--A[(j+d) % 8]); } } pathpen = blue + 2; // Draw all the intersections pointpen = red + 7; for (int x1=0; x1<8; ++x1) { for (int x2=x1+1; x2<8; ++x2) { for (int x3=x2+1; x3<8; ++x3) { for (int x4=x3+1; x4<8; ++x4) { D(IP(A[x1]--A[x2], A[x3]--A[x4])); D(IP(A[x1]--A[x3], A[x4]--A[x2])); D(IP(A[x1]--A[x4], A[x2]--A[x3])); } } } }[/asy]

Solution 2 (Working Backwards)

Let the number of intersections be $x$. We know that $x\le \dbinom{8}{4} = 70$, as every $4$ vertices on the octagon forms a quadrilateral with intersecting diagonals which is an intersection point. However, four diagonals intersect in the center, so we need to subtract $\dbinom{4}{2} -1 = 5$ from this count, $70-5 = 65$. Note that diagonals like $\overline{AD}$, $\overline{CG}$, and $\overline{BE}$ all intersect at the same point. There are $8$ of this type with three diagonals intersecting at the same point, so we need to subtract $2$ of the $\dbinom{3}{2}$ (one is kept as the actual intersection). In the end, we obtain $65 - 16 = \boxed{\textbf{(A) }49}$.

Solution 3 (Answer choices and reasoning)

We know that the amount of intersection points is at most $\dbinom{8}{4} = 70$, as in solution $2$. There's probably going to be more than $5$ intersections counted multiple times (to get $\textbf{(B) }65$), leading us to the only reasonable answer, $\boxed{\textbf{(A) }49}$. -Lcz Note: You can easily prove this by looking at the simple case of the diagonals intersecting in the middle of the octagon. 4$"major" diagonals intersect here and only 1$ intersection point is counted so you can subtract 3$from 70.  Then look to the "middle" ring where certainly more than 2$ intersections are formed by the intersection of 3$ diagonals(a rough diagram is really enough).

Solution 4 (Drawing but easier)

Like solution one, we may draw. Except note that the octagon has eight regions, and each region has an equal number of points, so drawing only one of the eight regions and the intersection points suffices. One of the eight regions contains $8$ points (not including the octagon center). However each adjacent region share one side in common and that side contains $2$ intersection points, so in actuality there are $8 - 2 = 6$ points per region. We multiply this by $8$ to get $6\cdot 8 = 48$ and add the one center point to get $48 + 1 = \boxed{\textbf{(A) }49}$.

~skyscraper

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2013amc10a/359

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS