# Difference between revisions of "2013 AMC 10B Problems/Problem 7"

## Problem

Six points are equally spaced around a circle of radius 1. Three of these points are the vertices of a triangle that is neither equilateral nor isosceles. What is the area of this triangle?

$\textbf{(A)}\ \frac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \frac{\sqrt{3}}{2}\qquad\textbf{(C)}\ \textbf{1}\qquad\textbf{(D)}\ \sqrt{2}\qquad\textbf{(E)}\ \text{2}$

## Solution 1

unitsize(72);
draw((0,0)--(1/2,sqrt(3)/2));
draw((1/2,sqrt(3)/2)--(3/2,sqrt(3)/2));
draw((3/2,sqrt(3)/2)--(2,0));
draw((2,0)--(3/2,-sqrt(3)/2));
draw((3/2,-sqrt(3)/2)--(1/2,-sqrt(3)/2));
draw((1/2,-sqrt(3)/2)--(0,0));
draw((3/2,sqrt(3)/2)--(1/2,-sqrt(3)/2));
draw((3/2,sqrt(3)/2)--(3/2,-sqrt(3)/2));
label("2",(3/2,sqrt(3)/2)--(1/2,-sqrt(3)/2),NW);
label("$\sqrt{3}$",(3/2,sqrt(3)/2)--(3/2,-sqrt(3)/2),E);
label("\$\frac{1}{2}",(3/2,-sqrt(3)/2)--(1/2,-sqrt(3)/2),S);
markscalefactor=0.01;
draw(rightanglemark((3/2,sqrt(3)/2),(3/2,-sqrt(3)/2),(1/2,-sqrt(3)/2)));
(Error compiling LaTeX. This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021) (preloaded format=latex)
restricted \write18 enabled.
entering extended mode
LaTeX2e <2020-10-01> patch level 4
L3 programming layer <2021-05-11>
(/usr/local/texlive/2021/texmf-dist/tex/latex/tools/.tex File ignored)
! I can't find file 616de9a8dbac36f0e55e0fec8efd47768dd66a3d_.tex'.
<*> ...6de9a8dbac36f0e55e0fec8efd47768dd66a3d_.tex

(Press Enter to retry, or Control-D to exit)
Please type another input file name
! Emergency stop.
<*> ...6de9a8dbac36f0e55e0fec8efd47768dd66a3d_.tex

No pages of output.
Transcript written on .log.
_shipout(prefix,f,currentpatterns,format,wait,view,t);
^
/usr/local/share/asymptote/plain_shipout.asy: 104.11: runtime: shipout failed)`

If there are no two points on the circle that are adjacent, then the triangle would be equilateral. If the three points are all adjacent, it would be isosceles. Thus, the only possibility is two adjacent points and one point two away. Because one of the sides of this triangle is the diameter, the opposite angle is a right angle. Also, because the two adjacent angles are one sixth of the circle apart, the angle opposite them is thirty degrees. This is a $30-60-90$ triangle. If the original six points are connected, a regular hexagon is created. This hexagon consists of six equilateral triangles, so the radius is equal to one of its side lengths. The radius is $1$, so the side opposite the thirty degree angle in the triangle is also $1$. From the properties of $30-60-90$ triangles, the area is $1\cdot\sqrt3/2$=$\boxed{\textbf{(B) } \frac{\sqrt3}{2}}$

## Solution 2—Similar to Solution 1

As every point on the circle is evenly spaced, the length of each arc is $\frac{\pi}{3}$, because the circumference is $2\pi$. Once we draw the triangle (as is explained in solution 1), we see that one angle in the triangle subtends one such arc. Thus, the measure of that angle is thirty degrees. Similarly, another angle in the triangle subtends an arc of twice the length, and thus equals 60 degrees. The last angle is equal to 90 degrees and the triangle is a $30-60-90$ triangle. We know that as the diameter, the length of the hypotenuse is 2, and thus, the other sides are 1 and $\sqrt{3}$. We then find the area to be $\boxed{\textbf{(B) } \frac{\sqrt{3}}{2} }$.