Difference between revisions of "2013 AMC 10B Problems/Problem 7"

(Problem)
m (Solution)
Line 7: Line 7:
 
==Solution==
 
==Solution==
 
If there are no two points on the circle that are adjacent, then the triangle would be equilateral.  If the three points are all adjacent, it would be isosceles.  Thus, the only possibility is two adjacent points and one point two away.  Because one of the sides of this triangle is the diameter, the opposite angle is a right angle.  Also, because the two adjacent angles are one sixth of the circle apart, the angle opposite them is thirty degrees.  This is a <math>30-60-90</math> triangle.   
 
If there are no two points on the circle that are adjacent, then the triangle would be equilateral.  If the three points are all adjacent, it would be isosceles.  Thus, the only possibility is two adjacent points and one point two away.  Because one of the sides of this triangle is the diameter, the opposite angle is a right angle.  Also, because the two adjacent angles are one sixth of the circle apart, the angle opposite them is thirty degrees.  This is a <math>30-60-90</math> triangle.   
If the original six points are connected, a regular hexagon is created.  This hexagon consists of six equilateral triangles, so the radius is equal to one of its side lengths.  The radius is <math>1</math>, so the side opposite the thirty degree angle in the triangle is also <math>1</math>.  From rules with <math>30-60-90</math> triangles, the area is <math>1\cdot\sqrt3/2</math>=<math>\boxed{\textbf{(B) } \frac{\sqrt3}{2}}</math>
+
If the original six points are connected, a regular hexagon is created.  This hexagon consists of six equilateral triangles, so the radius is equal to one of its side lengths.  The radius is <math>1</math>, so the side opposite the thirty degree angle in the triangle is also <math>1</math>.  From the properties of <math>30-60-90</math> triangles, the area is <math>1\cdot\sqrt3/2</math>=<math>\boxed{\textbf{(B) } \frac{\sqrt3}{2}}</math>
  
 
== See also ==
 
== See also ==
 
{{AMC10 box|year=2013|ab=B|num-b=6|num-a=8}}
 
{{AMC10 box|year=2013|ab=B|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:43, 25 December 2017

Problem

Six points are equally spaced around a circle of radius 1. Three of these points are the vertices of a triangle that is neither equilateral nor isosceles. What is the area of this triangle?

$\textbf{(A)}\ \frac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \frac{\sqrt{3}}{2}\qquad\textbf{(C)}\ \textbf{1}\qquad\textbf{(D)}\ \sqrt{2}\qquad\textbf{(E)}\ \text{2}$

Solution

If there are no two points on the circle that are adjacent, then the triangle would be equilateral. If the three points are all adjacent, it would be isosceles. Thus, the only possibility is two adjacent points and one point two away. Because one of the sides of this triangle is the diameter, the opposite angle is a right angle. Also, because the two adjacent angles are one sixth of the circle apart, the angle opposite them is thirty degrees. This is a $30-60-90$ triangle. If the original six points are connected, a regular hexagon is created. This hexagon consists of six equilateral triangles, so the radius is equal to one of its side lengths. The radius is $1$, so the side opposite the thirty degree angle in the triangle is also $1$. From the properties of $30-60-90$ triangles, the area is $1\cdot\sqrt3/2$=$\boxed{\textbf{(B) } \frac{\sqrt3}{2}}$

See also

2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png