# 2013 AMC 12A Problems/Problem 1

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Square $ABCD$ has side length $10$. Point $E$ is on $\overline{BC}$, and the area of $\bigtriangleup ABE$ is $40$. What is $BE$? $[asy] pair A,B,C,D,E; A=(0,0); B=(0,50); C=(50,50); D=(50,0); E = (40,50); draw(A--B); draw(B--E); draw(E--C); draw(C--D); draw(D--A); draw(A--E); dot(A); dot(B); dot(C); dot(D); dot(E); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,N); [/asy]$ $\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8 \qquad$

## Solution

We are given that the area of $\triangle ABE$ is $40$, and that $AB = 10$.

The area of a triangle is: $A = \frac{bh}{2}$

Using $AB$ as the height of $\triangle ABE$, $40 = \frac{10b}{2}$

and solving for $b$, $b = 8$, which is $E$

## Video Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 