2013 AMC 12A Problems/Problem 9

Revision as of 22:26, 30 December 2021 by Lyjaitt (talk | contribs) (See also)

Problem

In $\triangle ABC$, $AB=AC=28$ and $BC=20$. Points $D,E,$ and $F$ are on sides $\overline{AB}$, $\overline{BC}$, and $\overline{AC}$, respectively, such that $\overline{DE}$ and $\overline{EF}$ are parallel to $\overline{AC}$ and $\overline{AB}$, respectively. What is the perimeter of parallelogram $ADEF$?

[asy] size(180); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); real r=5/7; pair A=(10,sqrt(28^2-100)),B=origin,C=(20,0),D=(A.x*r,A.y*r); pair bottom=(C.x+(D.x-A.x),C.y+(D.y-A.y)); pair E=extension(D,bottom,B,C); pair top=(E.x+D.x,E.y+D.y); pair F=extension(E,top,A,C); draw(A--B--C--cycle^^D--E--F); dot(A^^B^^C^^D^^E^^F); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,S); label("$F$",F,dir(0)); [/asy]

$\textbf{(A) }48\qquad \textbf{(B) }52\qquad \textbf{(C) }56\qquad \textbf{(D) }60\qquad \textbf{(E) }72\qquad$

Solution

Note that because $\overline{DE}$ and $\overline{EF}$ are parallel to the sides of $\triangle ABC$, the internal triangles $\triangle BDE$ and $\triangle EFC$ are similar to $\triangle ABC$, and are therefore also isosceles triangles.

It follows that $BD = DE$. Thus, $AD + DE = AD + DB = AB = 28$.

Since opposite sides of parallelograms are equal, the perimeter is $2 * (AD + DE) =   \boxed{\textbf{(C) }{56}}$.

Video Solution

https://youtu.be/CCjcMVtkVaQ

~sugar_rush

See also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png