Difference between revisions of "2013 AMC 12B Problems/Problem 12"

m (minor edit)
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem 12==
+
== Problem ==
 +
Cities <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math> are connected by roads <math>\widetilde{AB}</math>, <math>\widetilde{AD}</math>, <math>\widetilde{AE}</math>, <math>\widetilde{BC}</math>, <math>\widetilde{BD}</math>, <math>\widetilde{CD}</math>, and <math>\widetilde{DE}</math>. How many different routes are there from <math>A</math> to <math>B</math> that use each road exactly once? (Such a route will necessarily visit some cities more than once.)
  
Cities <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math> are connected by roads <math>\widetilde{AB}</math>, <math>\widetilde{AD}</math>, <math>\widetilde{AE}</math>, <math>\widetilde{BC}</math>, <math>\widetilde{BD}</math>, <math>\widetilde{CD}</math>, and <math>\widetilde{DE}</math>. How many different routes are there from <math>A</math> to <math>B</math> that use each road exactly once? (Such a route will necessarily visit some cities more than once.)
 
 
<asy>
 
<asy>
 
unitsize(10mm);
 
unitsize(10mm);
Line 41: Line 41:
 
draw(squiggly(B--D, 4.04, 20), pp);
 
draw(squiggly(B--D, 4.04, 20), pp);
 
draw(squiggly(C--D, 2.718, 20), pp);
 
draw(squiggly(C--D, 2.718, 20), pp);
draw(squiggly(D--E, 2.718, -60), pp);</asy>
+
draw(squiggly(D--E, 2.718, -60), pp);
 +
</asy>
  
 
<math>\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 18</math>
 
<math>\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 18</math>
  
 
+
== Solution ==
 
 
==Solution==
 
 
 
 
Note that cities <math>C</math> and <math>E</math> can be removed when counting paths because if a path goes in to <math>C</math> or <math>E</math>, there is only one possible path to take out of cities <math>C</math> or <math>E</math>.
 
Note that cities <math>C</math> and <math>E</math> can be removed when counting paths because if a path goes in to <math>C</math> or <math>E</math>, there is only one possible path to take out of cities <math>C</math> or <math>E</math>.
 
So the diagram is as follows:
 
So the diagram is as follows:
 +
 
<asy>
 
<asy>
 
unitsize(10mm);
 
unitsize(10mm);
Line 68: Line 67:
 
draw(A--B..D..cycle);
 
draw(A--B..D..cycle);
 
draw(A--D);
 
draw(A--D);
draw(B--D);</asy>
+
draw(B--D);
 +
</asy>
  
 
Now we proceed with casework. Remember that there are two ways to travel from <math>A</math> to <math>D</math>, <math>D</math> to <math>A</math>, <math>B</math> to <math>D</math> and <math>D</math> to <math>B</math>.:
 
Now we proceed with casework. Remember that there are two ways to travel from <math>A</math> to <math>D</math>, <math>D</math> to <math>A</math>, <math>B</math> to <math>D</math> and <math>D</math> to <math>B</math>.:
  
Case 1 <math>A \Rightarrow D</math>: From <math>D</math>, if the path returns to <math>A</math>, then the next path must go to <math>B\Rightarrow D \Rightarrow B</math>. There are <math>2 \cdot 1 \cdot 2 = 4</math> possibilities of the path <math>ADABDB</math>. If the path goes to <math>B</math> from <math>D</math>, then the path must continue with either <math>BDAB</math> or <math>BADB</math>. There are <math>2 \cdot 2 \cdot 2 = 8</math> possibilities. So, this case gives <math>4+8=12</math> different possibilities.
+
Case 1 <math>A \Rightarrow D</math>: From <math>D</math>, if the path returns to <math>A</math>, then the next path must go to <math>B\Rightarrow D \Rightarrow B</math>. There are <math>2 \cdot 1 \cdot 2 = 4</math> possibilities of the path <math>ADABDB</math>. If the path goes to <math>D</math> from <math>B</math>, then the path must continue with either <math>BDAB</math> or <math>BADB</math>. There are <math>2 \cdot 2 \cdot 2 = 8</math> possibilities. So, this case gives <math>4+8=12</math> different possibilities.
  
 
Case 2 <math>A \Rightarrow B</math>: The path must continue with <math>BDADB</math>. There are <math>2 \cdot 2 = 4</math> possibilities for this case.  
 
Case 2 <math>A \Rightarrow B</math>: The path must continue with <math>BDADB</math>. There are <math>2 \cdot 2 = 4</math> possibilities for this case.  
  
Putting the two cases together gives <math>12+4 = \boxed{\textbf{(D)}16}</math>
+
Putting the two cases together gives <math>12+4 = \boxed{\textbf{(D)} \ 16}</math>
  
== See also ==
+
== See Also ==
 
{{AMC12 box|year=2013|ab=B|num-b=11|num-a=13}}
 
{{AMC12 box|year=2013|ab=B|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Revision as of 01:08, 19 October 2020

Problem

Cities $A$, $B$, $C$, $D$, and $E$ are connected by roads $\widetilde{AB}$, $\widetilde{AD}$, $\widetilde{AE}$, $\widetilde{BC}$, $\widetilde{BD}$, $\widetilde{CD}$, and $\widetilde{DE}$. How many different routes are there from $A$ to $B$ that use each road exactly once? (Such a route will necessarily visit some cities more than once.)

[asy] unitsize(10mm); defaultpen(linewidth(1.2pt)+fontsize(10pt)); dotfactor=4; pair A=(1,0), B=(4.24,0), C=(5.24,3.08), D=(2.62,4.98), E=(0,3.08); dot (A); dot (B); dot (C); dot (D); dot (E); label("$A$",A,S); label("$B$",B,SE); label("$C$",C,E); label("$D$",D,N); label("$E$",E,W); guide squiggly(path g, real stepsize, real slope=45) {  real len = arclength(g);  real step = len / round(len / stepsize);  guide squig;  for (real u = 0; u < len; u += step){  real a = arctime(g, u);  real b = arctime(g, u + step / 2);  pair p = point(g, a);  pair q = point(g, b);  pair np = unit( rotate(slope) * dir(g,a));  pair nq = unit( rotate(0 - slope) * dir(g,b));  squig = squig .. p{np} .. q{nq};  }  squig = squig .. point(g, length(g)){unit(rotate(slope)*dir(g,length(g)))};  return squig; } pen pp = defaultpen + 2.718; draw(squiggly(A--B, 4.04, 30), pp); draw(squiggly(A--D, 7.777, 20), pp); draw(squiggly(A--E, 5.050, 15), pp); draw(squiggly(B--C, 5.050, 15), pp); draw(squiggly(B--D, 4.04, 20), pp); draw(squiggly(C--D, 2.718, 20), pp); draw(squiggly(D--E, 2.718, -60), pp); [/asy]

$\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 18$

Solution

Note that cities $C$ and $E$ can be removed when counting paths because if a path goes in to $C$ or $E$, there is only one possible path to take out of cities $C$ or $E$. So the diagram is as follows:

[asy] unitsize(10mm); defaultpen(linewidth(1.2pt)+fontsize(10pt)); dotfactor=4; pair A=(1,0), B=(4.24,0), C=(5.24,3.08), D=(2.62,4.98), E=(0,3.08); dot (A); dot (B);  dot (D);  label("$A$",A,S); label("$B$",B,SE);  label("$D$",D,N);  draw(A--B..D..cycle); draw(A--D); draw(B--D); [/asy]

Now we proceed with casework. Remember that there are two ways to travel from $A$ to $D$, $D$ to $A$, $B$ to $D$ and $D$ to $B$.:

Case 1 $A \Rightarrow D$: From $D$, if the path returns to $A$, then the next path must go to $B\Rightarrow D \Rightarrow B$. There are $2 \cdot 1 \cdot 2 = 4$ possibilities of the path $ADABDB$. If the path goes to $D$ from $B$, then the path must continue with either $BDAB$ or $BADB$. There are $2 \cdot 2 \cdot 2 = 8$ possibilities. So, this case gives $4+8=12$ different possibilities.

Case 2 $A \Rightarrow B$: The path must continue with $BDADB$. There are $2 \cdot 2 = 4$ possibilities for this case.

Putting the two cases together gives $12+4 = \boxed{\textbf{(D)} \ 16}$

See Also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png