# 2013 AMC 12B Problems/Problem 4

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
The following problem is from both the 2013 AMC 12B #4 and 2013 AMC 10B #8, so both problems redirect to this page.

## Problem

Ray's car averages $40$ miles per gallon of gasoline, and Tom's car averages $10$ miles per gallon of gasoline. Ray and Tom each drive the same number of miles. What is the cars' combined rate of miles per gallon of gasoline?
$\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 25 \qquad \textbf{(D)}\ 30 \qquad \textbf{(E)}\ 40$

## Solution 1

Let Ray and Tom drive 40 miles. Ray's car would require $\frac{40}{40}=1$ gallon of gas and Tom's car would require $\frac{40}{10}=4$ gallons of gas. They would have driven a total of $40+40=80$ miles, on $1+4=5$ gallons of gas, for a combined rate of $\frac{80}{5}=$ $\boxed{\textbf{(B) }16}$

## Solution 2

Taking the harmonic mean of the two rates, we get $$\left(\frac{40^{-1} + 10^{-1}}{2}\right)^{-1} = \frac{2}{\frac{1}{40}+\frac{1}{10}} = \frac{2}{\frac{5}{40}} = \frac{2}{\frac{1}{8}} = \boxed{\textbf{(B) }16}.$$

-Solution by Joeya