Difference between revisions of "2013 AMC 8 Problems/Problem 23"

(Problem)
m (Solution 1)
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Angle <math>ABC</math> of <math>\triangle ABC</math> is a right angle. The sides of <math>\triangle ABC</math> are the diameters of semicircles as shown. The area of the semicircle on <math>\overline{AB}</math> equals <math>8\pi</math>, and the arc of the semicircle on <math>\overline{AC}</math> has length <math>8.5\pi</math>. What is the radius of the semicircle on <math>\overline{BC}</math>?
 
Angle <math>ABC</math> of <math>\triangle ABC</math> is a right angle. The sides of <math>\triangle ABC</math> are the diameters of semicircles as shown. The area of the semicircle on <math>\overline{AB}</math> equals <math>8\pi</math>, and the arc of the semicircle on <math>\overline{AC}</math> has length <math>8.5\pi</math>. What is the radius of the semicircle on <math>\overline{BC}</math>?
[asy]
+
<asy>
 
import graph;
 
import graph;
 +
pair A,B,C;
 +
A=(0,8);
 +
B=(0,0);
 +
C=(15,0);
 
draw((0,8)..(-4,4)..(0,0)--(0,8));
 
draw((0,8)..(-4,4)..(0,0)--(0,8));
 
draw((0,0)..(7.5,-7.5)..(15,0)--(0,0));
 
draw((0,0)..(7.5,-7.5)..(15,0)--(0,0));
Line 8: Line 12:
 
draw(arc((15/2,4),17/2,-theta,180-theta));
 
draw(arc((15/2,4),17/2,-theta,180-theta));
 
draw((0,8)--(15,0));
 
draw((0,8)--(15,0));
[/asy]
+
dot(A);
 +
dot(B);
 +
dot(C);
 +
label("$A$", A, NW);
 +
label("$B$", B, SW);
 +
label("$C$", C, SE);</asy>
  
 
<math>\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9</math>
 
<math>\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9</math>
  
==Solution==
+
==Solution 1==
 +
If the semicircle on AB were a full circle, the area would be <math>16\pi</math>.
 +
 
 +
<math>\pi r^2=16 \pi \Rightarrow r^2=16 \Rightarrow r=+4</math>, therefore the diameter of the first circle is <math>8</math>.
 +
 
 +
The arc of the largest semicircle is <math>8.5 \pi</math>, so if it were a full circle, the circumference would be <math>17 \pi</math>. So the <math>\text{diameter}=17</math>.
 +
 
 +
By the Pythagorean theorem, the other side has length <math>15</math>, so the radius is <math>\boxed{\textbf{(B)}\ 7.5}</math>
 +
 
 +
==Solution 2==
 +
We go as in Solution 1, finding the diameter of the circle on AC and AB. Then, an extended version of the theorem says that the sum of the semicircles on the left is equal to the biggest one, so the area of the largest is <math>\frac{289\pi}{8}</math>, and the middle one is <math>\frac{289\pi}{8}-\frac{64\pi}{8}=\frac{225\pi}{8}</math>, so the radius is <math>\frac{15}{2}=\boxed{\textbf{(B)}\ 7.5}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=22|num-a=24}}
 
{{AMC8 box|year=2013|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:15, 8 October 2020

Problem

Angle $ABC$ of $\triangle ABC$ is a right angle. The sides of $\triangle ABC$ are the diameters of semicircles as shown. The area of the semicircle on $\overline{AB}$ equals $8\pi$, and the arc of the semicircle on $\overline{AC}$ has length $8.5\pi$. What is the radius of the semicircle on $\overline{BC}$? [asy] import graph; pair A,B,C; A=(0,8); B=(0,0); C=(15,0); draw((0,8)..(-4,4)..(0,0)--(0,8)); draw((0,0)..(7.5,-7.5)..(15,0)--(0,0)); real theta = aTan(8/15); draw(arc((15/2,4),17/2,-theta,180-theta)); draw((0,8)--(15,0)); dot(A); dot(B); dot(C); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE);[/asy]

$\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9$

Solution 1

If the semicircle on AB were a full circle, the area would be $16\pi$.

$\pi r^2=16 \pi \Rightarrow r^2=16 \Rightarrow r=+4$, therefore the diameter of the first circle is $8$.

The arc of the largest semicircle is $8.5 \pi$, so if it were a full circle, the circumference would be $17 \pi$. So the $\text{diameter}=17$.

By the Pythagorean theorem, the other side has length $15$, so the radius is $\boxed{\textbf{(B)}\ 7.5}$

Solution 2

We go as in Solution 1, finding the diameter of the circle on AC and AB. Then, an extended version of the theorem says that the sum of the semicircles on the left is equal to the biggest one, so the area of the largest is $\frac{289\pi}{8}$, and the middle one is $\frac{289\pi}{8}-\frac{64\pi}{8}=\frac{225\pi}{8}$, so the radius is $\frac{15}{2}=\boxed{\textbf{(B)}\ 7.5}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png