Difference between revisions of "2013 AMC 8 Problems/Problem 24"

m (Solution)
(Solution)
Line 39: Line 39:
 
</asy>
 
</asy>
  
==Solution==
+
==Solution 1==
 
<asy>
 
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,X;
 
pair A,B,C,D,E,F,G,H,I,J,X;
Line 79: Line 79:
  
 
First let <math>s=2</math> (where <math>s</math> is the side length of the squares) for simplicity. We can extend <math>\overline{IJ}</math> until it hits the extension of <math>\overline{AB}</math>. Call this point <math>X</math>. The area of triangle <math>AXJ</math> then is <math>\dfrac{3 \cdot 4}{2}</math> The area of rectangle <math>BXIC</math> is <math>2 \cdot 1 = 2</math>. Thus, our desired area is <math>6-2 = 4</math>. Now, the ratio of the shaded area to the combined area of the three squares is <math>\frac{4}{3\cdot 2^2} = \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 
First let <math>s=2</math> (where <math>s</math> is the side length of the squares) for simplicity. We can extend <math>\overline{IJ}</math> until it hits the extension of <math>\overline{AB}</math>. Call this point <math>X</math>. The area of triangle <math>AXJ</math> then is <math>\dfrac{3 \cdot 4}{2}</math> The area of rectangle <math>BXIC</math> is <math>2 \cdot 1 = 2</math>. Thus, our desired area is <math>6-2 = 4</math>. Now, the ratio of the shaded area to the combined area of the three squares is <math>\frac{4}{3\cdot 2^2} = \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 +
 +
==Solution 2==
 +
 +
<asy>
 +
pair A,B,C,D,E,F,G,H,I,J,X;
 +
A = (0.5,2);
 +
B = (1.5,2);
 +
C = (1.5,1);
 +
D = (0.5,1);
 +
E = (0,1);
 +
F = (0,0);
 +
G = (1,0);
 +
H = (1,1);
 +
I = (2,1);
 +
J = (2,0);
 +
X= (1.25,1);
 +
draw(A--B);
 +
draw(C--B);
 +
draw(D--A);
 +
draw(F--E);
 +
draw(I--J);
 +
draw(J--F);
 +
draw(G--H);
 +
draw(A--J);
 +
filldraw(A--B--C--I--J--cycle,grey);
 +
draw(E--I);
 +
dot(X,red);
 +
label("$A$", A, NW);
 +
label("$B$", B, NE);
 +
label("$C$", C, NE);
 +
label("$D$", D, NW);
 +
label("$E$", E, NW);
 +
label("$F$", F, SW);
 +
label("$G$", G, S);
 +
label("$H$", H, N);
 +
label("$I$", I, NE);
 +
label("$X$", X,SW,red);
 +
label("$J$", J, SE);</asy>
 +
 +
Let the side length of each square be <math>1</math>.
 +
 +
Let the intersection of <math>AJ</math> and <math>EI</math> be <math>X</math>.
 +
 +
Since <math>[ABCD]=[GHIJ]</math>, <math>AD=IJ</math>. Since <math>\angle IXJ</math> and <math>\angle AXD</math> are vertical angles, they are congruent. We also have <math>\angle JIH\cong\angle ADC</math> by definition.
 +
 +
So we have <math>\triangle ADX\cong\triangle JIX</math> by <math>\textit{AAS}</math> congruence. Therefore, <math>DX=JX</math>.
 +
 +
Since <math>C</math> and <math>D</math> are midpoints of sides, <math>DH=CJ=\dfrac{1}{2}</math>. This combined with <math>DX=JX</math> yields <math>HX=CX=\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4}</math>.
 +
 +
The area of trapezoid <math>ABCX</math> is <math>\dfrac{1}{2}(AB+CX)(BC)=\dfrac{1}{2}\times \dfrac{5}{4}\times 1=\dfrac{5}{8}</math>.
 +
 +
The area of triangle <math>JIX</math> is <math>\dfrac{1}{2}\times XJ\times IJ=\dfrac{1}{2}\times \dfrac{3}{4}\times 1=\dfrac{3}{8}</math>.
 +
 +
So the area of the pentagon <math>AJICB</math> is <math>\dfrac{3}{8}+\dfrac{5}{8}=1</math>.
 +
 +
The area of the <math>3</math> squares is <math>1\times 3=3</math>.
 +
 +
Therefore, <math>\dfrac{[AJICB]}{[ABCIJFED]}= \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=23|num-a=25}}
 
{{AMC8 box|year=2013|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:08, 27 November 2013

Problem

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ and $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?

$\textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}$

[asy] pair A,B,C,D,E,F,G,H,I,J;  A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  draw(A--B);  draw(C--B);  draw(D--A);   draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); label("$A$", A, NW); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, SW); label("$G$", G, S); label("$H$", H, N); label("$I$", I, NE); label("$J$", J, SE); [/asy]

Solution 1

[asy] pair A,B,C,D,E,F,G,H,I,J,X; A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  X= extension(I,J,A,B); dot(X,red); draw(I--X--B,red); draw(A--B);  draw(C--B);  draw(D--A);  draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); label("$A$", A, NW); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, SW); label("$G$", G, S); label("$H$", H, N); label("$I$", I, NE); label("$X$", X,SE); label("$J$", J, SE);[/asy]


First let $s=2$ (where $s$ is the side length of the squares) for simplicity. We can extend $\overline{IJ}$ until it hits the extension of $\overline{AB}$. Call this point $X$. The area of triangle $AXJ$ then is $\dfrac{3 \cdot 4}{2}$ The area of rectangle $BXIC$ is $2 \cdot 1 = 2$. Thus, our desired area is $6-2 = 4$. Now, the ratio of the shaded area to the combined area of the three squares is $\frac{4}{3\cdot 2^2} = \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}$.

Solution 2

[asy] pair A,B,C,D,E,F,G,H,I,J,X; A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  X= (1.25,1); draw(A--B);  draw(C--B);  draw(D--A);  draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); dot(X,red); label("$A$", A, NW); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, SW); label("$G$", G, S); label("$H$", H, N); label("$I$", I, NE); label("$X$", X,SW,red); label("$J$", J, SE);[/asy]

Let the side length of each square be $1$.

Let the intersection of $AJ$ and $EI$ be $X$.

Since $[ABCD]=[GHIJ]$, $AD=IJ$. Since $\angle IXJ$ and $\angle AXD$ are vertical angles, they are congruent. We also have $\angle JIH\cong\angle ADC$ by definition.

So we have $\triangle ADX\cong\triangle JIX$ by $\textit{AAS}$ congruence. Therefore, $DX=JX$.

Since $C$ and $D$ are midpoints of sides, $DH=CJ=\dfrac{1}{2}$. This combined with $DX=JX$ yields $HX=CX=\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4}$.

The area of trapezoid $ABCX$ is $\dfrac{1}{2}(AB+CX)(BC)=\dfrac{1}{2}\times \dfrac{5}{4}\times 1=\dfrac{5}{8}$.

The area of triangle $JIX$ is $\dfrac{1}{2}\times XJ\times IJ=\dfrac{1}{2}\times \dfrac{3}{4}\times 1=\dfrac{3}{8}$.

So the area of the pentagon $AJICB$ is $\dfrac{3}{8}+\dfrac{5}{8}=1$.

The area of the $3$ squares is $1\times 3=3$.

Therefore, $\dfrac{[AJICB]}{[ABCIJFED]}= \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS