# Difference between revisions of "2013 AMC 8 Problems/Problem 25"

## Problem

A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are $R_1 = 100$ inches, $R_2 = 60$ inches, and $R_3 = 80$ inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B? $[asy] pair A,B; size(8cm); A=(0,0); B=(480,0); draw((0,0)--(480,0),linetype("3 4")); filldraw(circle((8,0),8),black); draw((0,0)..(100,-100)..(200,0)); draw((200,0)..(260,60)..(320,0)); draw((320,0)..(400,-80)..(480,0)); draw((100,0)--(150,-50sqrt(3)),Arrow(size=4)); draw((260,0)--(290,30sqrt(3)),Arrow(size=4)); draw((400,0)--(440,-40sqrt(3)),Arrow(size=4)); label("A", A, SW); label("B", B, SE); label("R_1", (100,-40), W); label("R_2", (260,40), SW); label("R_3", (400,-40), W);[/asy]$ $\textbf{(A)}\ 238\pi \qquad \textbf{(B)}\ 240\pi \qquad \textbf{(C)}\ 260\pi \qquad \textbf{(D)}\ 280\pi \qquad \textbf{(E)}\ 500\pi$

## Solution 1

The radius of the ball is 2 inches. If you think about the ball rolling or draw a path for the ball (see figure below), you see that in A and C it loses $2\pi*2/2=2\pi$ inches, and it gains $2\pi$ inches on B. $[asy] unitsize(0.04cm); import graph; draw(circle(96*dir(0),4),linewidth(1.3)); draw(circle(96*dir(-45),4),linetype("4 4")); draw(circle(96*dir(-90),4),linetype("4 4")); draw(circle(96*dir(-135),4),linetype("4 4")); draw(circle(96*dir(180),4),linetype("4 4")); draw((-100,0)..(0,-100)..(100,0)); draw((-96,0)..(0,-96)..(96,0),dotted); label("1",(-87,0)); label("2",(-60,-60)); label("3",(0,-87)); label("4",(60,-60)); label("5",(87,0)); [/asy]$ So, the departure from the length of the track means that the answer is $\frac{200+120+160}{2}*\pi+(-2-2+2)*\pi=240\pi-2\pi=\boxed{\textbf{(A)}\ 238\pi}$.

## Solution 2(No Advanced Computation)

The total length of all of the arcs is $100\pi +80\pi +60\pi=240\pi$. Since we want the path from the center, the actual distance will be shorter. Therefore, the only answer choice less than $240\pi$ is $\boxed{\textbf{(A)}\ 238\pi}$.

## See Also

 2013 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 24 Followed byLast Problem 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS