2013 IMO Problems/Problem 5

Revision as of 12:47, 21 June 2018 by Illogical 21 (talk | contribs) (added problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $\mathbb Q_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb Q_{>0}\to\mathbb R$ be a function satisfying the following three conditions:

(i) for all $x,y\in\mathbb Q_{>0}$, we have $f(x)f(y)\geq f(xy)$; (ii) for all $x,y\in\mathbb Q_{>0}$, we have $f(x+y)\geq f(x)+f(y)$; (iii) there exists a rational number $a>1$ such that $f(a)=a$.

Prove that $f(x)=x$ for all $x\in\mathbb Q_{>0}$.

Proposed by Bulgaria