Difference between revisions of "2013 USAJMO"

(Day 1)
(Problem 3)
Line 17: Line 17:
  
 
===Problem 3===
 
===Problem 3===
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that .  
+
In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math>.
  
 
[[2013 USAMO Problems/Problem 1|Solution]]
 
[[2013 USAMO Problems/Problem 1|Solution]]

Revision as of 19:17, 11 May 2013

Day 1

Problem 1

Are there integers $a$ and $b$ such that $a^5b+3$ and $ab^5+3$ are both perfect cubes of integers?

Solution

Problem 2

Each cell of an board is filled with some nonnegative integer. Two numbers in the filling are said to be adjacent if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a garden if it satisfies the following two conditions:

(i) The difference between any two adjacent numbers is either or . (ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to .

Determine the number of distinct gardens in terms of and .

Solution

Problem 3

In triangle $ABC$, points $P,Q,R$ lie on sides $BC,CA,AB$ respectively. Let $\omega_A$, $\omega_B$, $\omega_C$ denote the circumcircles of triangles $AQR$, $BRP$, $CPQ$, respectively. Given the fact that segment $AP$ intersects $\omega_A$, $\omega_B$, $\omega_C$ again at $X,Y,Z$ respectively, prove that $YX/XZ=BP/PC$.

Solution

Day 2

Problem 4

Let be the number of ways to write as a sum of powers of , where we keep track of the order of the summation. For example, because can be written as , , , , , and . Find the smallest greater than for which is odd.

Solution

Problem 5

Quadrilateral is inscribed in the semicircle with diameter . Segments and meet at . Point is the foot of the perpendicular from to line . Point lies on such that line is perpendicular to line . Let be the intersection of segments and . Prove that

Solution

Problem 6

Find all real numbers satisfying

Solution

See Also

2013 USAJMO (ProblemsResources)
Preceded by
2012 USAJMO
Followed by
2014 USAJMO
1 2 3 4 5 6
All USAJMO Problems and Solutions