Difference between revisions of "2013 USAMO Problems/Problem 2"

(Created page with "For a positive integer plot equally spaced points around a circle. Label one of them , and place a marker at . One may move the marker forward in a clockwise direction to either ...")
 
Line 1: Line 1:
For a positive integer plot equally spaced points around a circle. Label one of them , and place a marker at . One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of distinct moves available; two from each point. Let count the number of ways to advance around the circle exactly twice, beginning and ending at , without repeating a move. Prove that for all .
+
For a positive integer <math>n\geq 3</math> plot <math>n</math> equally spaced points around a circle. Label one of them <math>A</math>, and place a marker at <math>A</math>. One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of <math>2n</math> distinct moves available; two from each point. Let <math>a_n</math> count the number of ways to advance around the circle exactly twice, beginning and ending at <math>A</math>, without repeating a move. Prove that <math>a_{n-1}+a_n=2^n</math> for all <math>n\geq 4</math>

Revision as of 19:40, 11 May 2013

For a positive integer $n\geq 3$ plot $n$ equally spaced points around a circle. Label one of them $A$, and place a marker at $A$. One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of $2n$ distinct moves available; two from each point. Let $a_n$ count the number of ways to advance around the circle exactly twice, beginning and ending at $A$, without repeating a move. Prove that $a_{n-1}+a_n=2^n$ for all $n\geq 4$