2013 USAMO Problems/Problem 3

Revision as of 06:57, 27 October 2022 by Circling (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Let $n$ be a positive integer. There are $\tfrac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing $n$ marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration $C$, let $f(C)$ denote the smallest number of operations required to obtain $C$ from the initial configuration. Find the maximum value of $f(C)$, where $C$ varies over all admissible configurations.


This problem needs a solution. If you have a solution for it, please help us out by adding it.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS