Difference between revisions of "2014 AIME II Problems/Problem 11"

(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D(\frac{1}{2}, 0)</math>, <math>E(-\frac{\sqrt{3}}{2}, 0)</math>, and <math>R(0, \frac{\sqrt{3}}{2}).</math> <math>M =</math> midpoint<math>(D, R) = (\frac{1}{4}, \frac{\sqrt{3}}{4})</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + \frac{2}{\sqrt{3}}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.
+
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D(\frac{1}{2}, 0)</math>, <math>E(-\frac{\sqrt{3}}{2}, 0)</math>, and <math>R(0, \frac{\sqrt{3}}{2}).</math> <math>M =</math> midpoint<math>(D, R) = (\frac{1}{4}, \frac{\sqrt{3}}{4})</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 23:33, 2 March 2015

Problem 11

In $\triangle RED$, $\measuredangle DRE=75^{\circ}$ and $\measuredangle RED=45^{\circ}$. $|RD|=1$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC}\perp\overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA=AR$. Then $AE=\frac{a-\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

Solution

Let $P$ be the foot of the perpendicular from $A$ to $\overline{CR}$, so $\overline{AP}\parallel\overline{EM}$. Since triangle $ARC$ is isosceles, $P$ is the midpoint of $\overline{CR}$, and $\overline{PM}\parallel\overline{CD}$. Thus, $APME$ is a parallelogram and $AE = PM = \frac{CD}{2}$. We can then use coordinates. Let $O$ be the foot of altitude $RO$ and set $O$ as the origin. Now we notice special right triangles! In particular, $DO = \frac{1}{2}$ and $EO = RO = \frac{\sqrt{3}}{2}$, so $D(\frac{1}{2}, 0)$, $E(-\frac{\sqrt{3}}{2}, 0)$, and $R(0, \frac{\sqrt{3}}{2}).$ $M =$ midpoint$(D, R) = (\frac{1}{4}, \frac{\sqrt{3}}{4})$ and the slope of $ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}$, so the slope of $RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.$ Instead of finding the equation of the line, we use the definition of slope: for every $CO = x$ to the left, we go $\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}$ up. Thus, $x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.$ $DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}$, and $AE = \frac{7 - \sqrt{27}}{22}$, so the answer is $\boxed{056}$.

See also

2014 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png