Difference between revisions of "2014 AMC 10A Problems/Problem 8"

m (Solution)
(One intermediate revision by one other user not shown)
Line 5: Line 5:
 
<math> \textbf{(A)}\ \dfrac{14!15!}2\qquad\textbf{(B)}\ \dfrac{15!16!}2\qquad\textbf{(C)}\ \dfrac{16!17!}2\qquad\textbf{(D)}\ \dfrac{17!18!}2\qquad\textbf{(E)}\ \dfrac{18!19!}2 </math>
 
<math> \textbf{(A)}\ \dfrac{14!15!}2\qquad\textbf{(B)}\ \dfrac{15!16!}2\qquad\textbf{(C)}\ \dfrac{16!17!}2\qquad\textbf{(D)}\ \dfrac{17!18!}2\qquad\textbf{(E)}\ \dfrac{18!19!}2 </math>
  
== Solution 23497234827458704989327428349==
+
== Solution ==
  
 
Note that for all positive <math>n</math>, we have  
 
Note that for all positive <math>n</math>, we have  
Line 15: Line 15:
  
 
In order for <math>\frac{n+1}{2}</math> to be a perfect square, <math>n+1</math> must be twice a perfect square. From the answer choices, <math>n+1=18</math> works, thus, <math>n=17</math> and our desired answer is <math>\boxed{\textbf{(D)}\ \frac{17!18!}{2}}</math>
 
In order for <math>\frac{n+1}{2}</math> to be a perfect square, <math>n+1</math> must be twice a perfect square. From the answer choices, <math>n+1=18</math> works, thus, <math>n=17</math> and our desired answer is <math>\boxed{\textbf{(D)}\ \frac{17!18!}{2}}</math>
 +
 +
==Video Solution==
 +
https://youtu.be/uY_Xp8GtXP8
 +
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Revision as of 11:21, 16 July 2020

Problem

Which of the following numbers is a perfect square?

$\textbf{(A)}\ \dfrac{14!15!}2\qquad\textbf{(B)}\ \dfrac{15!16!}2\qquad\textbf{(C)}\ \dfrac{16!17!}2\qquad\textbf{(D)}\ \dfrac{17!18!}2\qquad\textbf{(E)}\ \dfrac{18!19!}2$

Solution

Note that for all positive $n$, we have \[\dfrac{n!(n+1)!}{2}\] \[\implies\dfrac{(n!)^2\cdot(n+1)}{2}\] \[\implies (n!)^2\cdot\dfrac{n+1}{2}\]

We must find a value of $n$ such that $(n!)^2\cdot\dfrac{n+1}{2}$ is a perfect square. Since $(n!)^2$ is a perfect square, we must also have $\frac{n+1}{2}$ be a perfect square.

In order for $\frac{n+1}{2}$ to be a perfect square, $n+1$ must be twice a perfect square. From the answer choices, $n+1=18$ works, thus, $n=17$ and our desired answer is $\boxed{\textbf{(D)}\ \frac{17!18!}{2}}$

Video Solution

https://youtu.be/uY_Xp8GtXP8

~savannahsolver

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png