Difference between revisions of "2014 AMC 10B Problems/Problem 2"

(Solution)
(Solution 2)
 
(13 intermediate revisions by 6 users not shown)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
We can synchronously multiply <math> {2^3} </math> to the polynomials both above and below the fraction bar. Thus,  
 
We can synchronously multiply <math> {2^3} </math> to the polynomials both above and below the fraction bar. Thus,  
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}, resulting in 64. </cmath>
+
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}. </cmath>
Therefore, the fraction equals to $\boxed{{64 (\textbf{E})}}.
+
Hence, the fraction equals to <math>\boxed{{64 (\textbf{E})}}</math>.
 +
 
 +
==Solution 2==
 +
We have
 +
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,</cmath> so our answer is <math>\boxed{{(\textbf{E})}}</math>.
 +
 
 +
==Video Solution==
 +
https://youtu.be/vLFULrT_7yk
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2014|ab=B|num-b=1|num-a=3}}
 
{{AMC10 box|year=2014|ab=B|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:19, 24 April 2022

Problem

What is $\frac{2^3 + 2^3}{2^{-3} + 2^{-3}}$?

$\textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64$

Solution

We can synchronously multiply ${2^3}$ to the polynomials both above and below the fraction bar. Thus, \[\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}.\] Hence, the fraction equals to $\boxed{{64 (\textbf{E})}}$.

Solution 2

We have \[\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,\] so our answer is $\boxed{{(\textbf{E})}}$.

Video Solution

https://youtu.be/vLFULrT_7yk

~savannahsolver

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS