Difference between revisions of "2014 AMC 10B Problems/Problem 21"
m (→Solution 1) |
(→Solution 2) |
||
Line 101: | Line 101: | ||
The area of <math>\Delta AED</math> is by Heron's, <math>4\sqrt{9(4)(3)(2)}=24\sqrt{6}</math>. This makes the length of the altitude from <math>D</math> onto <math>\overline{AE}</math> equal to <math>4\sqrt{6}</math>. One may now proceed as in Solution <math>1</math> to obtain an answer of <math>\boxed{\textbf{(B) }25}</math>. | The area of <math>\Delta AED</math> is by Heron's, <math>4\sqrt{9(4)(3)(2)}=24\sqrt{6}</math>. This makes the length of the altitude from <math>D</math> onto <math>\overline{AE}</math> equal to <math>4\sqrt{6}</math>. One may now proceed as in Solution <math>1</math> to obtain an answer of <math>\boxed{\textbf{(B) }25}</math>. | ||
+ | |||
+ | |||
+ | |||
+ | ==Solution 3== | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | {{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:17, 23 September 2021
Problem
Trapezoid has parallel sides of length and of length . The other two sides are of lengths and . The angles and are acute. What is the length of the shorter diagonal of ?
Solution 1
In the diagram, . Denote and . In right triangle , we have from the Pythagorean theorem: . Note that since , we have . Using the Pythagorean theorem in right triangle , we have .
We isolate the term in both equations, getting and
.
Setting these equal, we have . Now, we can determine that .
The two diagonals are and . Using the Pythagorean theorem again on and , we can find these lengths to be and . Since , is the shorter length*, so the answer is .
- Or, alternatively, one can notice that the two triangles have the same height but has a shorter base than .
Solution 2
The area of is by Heron's, . This makes the length of the altitude from onto equal to . One may now proceed as in Solution to obtain an answer of .
Solution 3
See Also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.