Difference between revisions of "2014 AMC 10B Problems/Problem 22"

(Problem)
Line 16: Line 16:
 
[[Category: Introductory Geometry Problems]]
 
[[Category: Introductory Geometry Problems]]
  
==Solution==
 
 
We connect the centers of the circle and one of the semicircles, then draw the perpendicular from the center of the middle circle to that side, as shown.
 
 
<asy>
 
scale(200);
 
draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle));
 
path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180);
 
draw(p);
 
p=rotate(90)*p; draw(p);
 
p=rotate(90)*p; draw(p);
 
p=rotate(90)*p; draw(p);
 
draw(scale((sqrt(5)-1)/4)*unitcircle);
 
pair OO=(0,0);
 
pair XX=(-.25,-.5);
 
pair YY=(0,-.5);
 
draw(YY--OO--XX--cycle,black+1bp);
 
label("$\frac12$",.5*(XX+YY),S);
 
label("$1$",.5*YY,E);
 
</asy>
 
 
Let's make an equation by the pythagorean theorem.
 
 
<math>\sqrt{1^2 + \left(\frac12\right)^2} = \sqrt{\frac54} = \frac{\sqrt5}{2}</math>
 
 
Let's call <math>r</math> as the radius of the circle that we want to find. We see that the hypotenuse of the bold right triangle is <math>\dfrac{1}{2}+r</math>, and thus <math>r</math> is <math>\boxed{\textbf{(B)} \frac{\sqrt{5}-1}{2}}</math>
 
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2014|ab=B|num-b=21|num-a=23}}
 
{{AMC10 box|year=2014|ab=B|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:06, 15 October 2015

Problem

Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles?

$\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3$

[asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); [/asy]


See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS