Difference between revisions of "2014 AMC 12A Problems/Problem 17"

(Created page with "==Problem== A <math>4\times 4\times h</math> rectangular box contains a sphere of radius <math>2</math> and eight smaller spheres of radius <math>1</math>. The smaller spheres a...")
 
m (Solution)
(11 intermediate revisions by 9 users not shown)
Line 3: Line 3:
  
 
<center><asy>
 
<center><asy>
import three;
+
import graph3;
 
import solids;
 
import solids;
 
real h=2+2*sqrt(7);
 
real h=2+2*sqrt(7);
 
currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2));
 
currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2));
currentlight=light(1,0,3);
+
currentlight=light(4,-4,4);
 
draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0));
 
draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0));
draw(shift((1,3,1))*unitsphere,black);
+
draw(shift((1,3,1))*unitsphere,gray(0.85));
draw(shift((3,3,1))*unitsphere,black);
+
draw(shift((3,3,1))*unitsphere,gray(0.85));
draw(shift((3,1,1))*unitsphere,black);
+
draw(shift((3,1,1))*unitsphere,gray(0.85));
draw(shift((1,1,1))*unitsphere,black);
+
draw(shift((1,1,1))*unitsphere,gray(0.85));
draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,black);
+
draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85));
draw(shift((1,3,h-1))*unitsphere,black);
+
draw(shift((1,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,3,h-1))*unitsphere,black);
+
draw(shift((3,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,1,h-1))*unitsphere,black);
+
draw(shift((3,1,h-1))*unitsphere,gray(0.85));
draw(shift((1,1,h-1))*unitsphere,black);
+
draw(shift((1,1,h-1))*unitsphere,gray(0.85));
 
draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h));
 
draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h));
 
</asy></center>
 
</asy></center>
Line 26: Line 26:
 
\textbf{(D) }4\sqrt 5\qquad
 
\textbf{(D) }4\sqrt 5\qquad
 
\textbf{(E) }4\sqrt 7\qquad</math>
 
\textbf{(E) }4\sqrt 7\qquad</math>
 +
[[Category: Introductory Geometry Problems]]
 +
 +
==Solution 1==
 +
 +
Let <math>A</math> be the point in the same plane as the centers of the top spheres equidistant from said centers. Let <math>B</math> be the analogous point for the bottom spheres, and let <math>C</math> be the midpoint of <math>\overline{AB}</math> and the center of the large sphere. Let <math>D</math> and <math>E</math> be the points at which line <math>AB</math> intersects the top of the box and the bottom, respectively.
 +
 +
Let <math>O</math> be the center of any of the top spheres (you choose!). We have <math>AO=1\cdot\sqrt{2}</math>, and <math>CO=3</math>, so <math>AC=\sqrt{3^2-\sqrt2^2}=\sqrt{7}</math>. Similarly, <math>BC=\sqrt{7}</math>. <math>\overline{AD}</math> and <math>\overline{BE}</math> are clearly equal to the radius of the small spheres, <math>1</math>. Thus the total height is <math>AD+AC+BC+BE=2+2\sqrt7</math>, or <math>\boxed{\textbf{(A)}}</math>.
 +
 +
(Solution by AwesomeToad)
 +
 +
==Solution 2==
 +
 +
[[File:2014 AMC 12A Problem 17.JPG|none|500px|caption]]
 +
Let <math>A</math> be the center of the large sphere and <math>C</math> be the center of any small sphere. Let <math>D</math> be a vertex of the rectangular prism closest to point <math>C</math>. Let <math>F</math> be the point on the edge of the prism such that <math>\overline{DF}</math> and <math>\overline{AF}</math> are perpendicular. Let points <math>B</math> and point <math>E</math> lie on <math>\overline{AF}</math> and <math>\overline{DF}</math> respectively such that <math>\overline{CE}</math> and <math>\overline{CB}</math> are perpendicular at <math>C</math>.
 +
 +
 +
<math>AC</math> is the radii of the spheres, so <math>AC=2+1=3</math>. <math>CE</math> is the shortest length between the center of a small sphere and the edge of the prism, so <math>CE=\sqrt{2}</math>. Similarly, <math>AF=2\sqrt{2}</math>. Since <math>CEFB</math> is a rectangle, <math>BF=CE=\sqrt{2}</math>. Since <math>AF=2\sqrt{2}</math>, <math>AB=AF - BF = \sqrt{2}</math>. Then, <math>BC=\sqrt{3^2-\sqrt2^2}=\sqrt{7}=EF</math>. <math>DE</math> is the length from <math>C</math> to the top of the prism or <math>1</math>. Thus, <math>DF=DE+EF=1+\sqrt{7}</math>. The prism is symmetrical, so <math>h=2DF=\boxed{\textbf{(A)}}</math>
 +
 +
(Solution by BJHHar)
 +
 +
==Solution 3==
 +
 +
take a cross section and see that h is made up of two radii of the circle plus some radical expression. the only choice satisfying this condition is (a)
 +
 +
==See Also==
 +
{{AMC12 box|year=2014|ab=A|num-b=16|num-a=18}}
 +
{{MAA Notice}}

Revision as of 09:08, 7 July 2020

Problem

A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$?

[asy] import graph3; import solids; real h=2+2*sqrt(7); currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2)); currentlight=light(4,-4,4); draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0)); draw(shift((1,3,1))*unitsphere,gray(0.85)); draw(shift((3,3,1))*unitsphere,gray(0.85)); draw(shift((3,1,1))*unitsphere,gray(0.85)); draw(shift((1,1,1))*unitsphere,gray(0.85)); draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85)); draw(shift((1,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,1,h-1))*unitsphere,gray(0.85)); draw(shift((1,1,h-1))*unitsphere,gray(0.85)); draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h)); [/asy]

$\textbf{(A) }2+2\sqrt 7\qquad \textbf{(B) }3+2\sqrt 5\qquad \textbf{(C) }4+2\sqrt 7\qquad \textbf{(D) }4\sqrt 5\qquad \textbf{(E) }4\sqrt 7\qquad$

Solution 1

Let $A$ be the point in the same plane as the centers of the top spheres equidistant from said centers. Let $B$ be the analogous point for the bottom spheres, and let $C$ be the midpoint of $\overline{AB}$ and the center of the large sphere. Let $D$ and $E$ be the points at which line $AB$ intersects the top of the box and the bottom, respectively.

Let $O$ be the center of any of the top spheres (you choose!). We have $AO=1\cdot\sqrt{2}$, and $CO=3$, so $AC=\sqrt{3^2-\sqrt2^2}=\sqrt{7}$. Similarly, $BC=\sqrt{7}$. $\overline{AD}$ and $\overline{BE}$ are clearly equal to the radius of the small spheres, $1$. Thus the total height is $AD+AC+BC+BE=2+2\sqrt7$, or $\boxed{\textbf{(A)}}$.

(Solution by AwesomeToad)

Solution 2

caption

Let $A$ be the center of the large sphere and $C$ be the center of any small sphere. Let $D$ be a vertex of the rectangular prism closest to point $C$. Let $F$ be the point on the edge of the prism such that $\overline{DF}$ and $\overline{AF}$ are perpendicular. Let points $B$ and point $E$ lie on $\overline{AF}$ and $\overline{DF}$ respectively such that $\overline{CE}$ and $\overline{CB}$ are perpendicular at $C$.


$AC$ is the radii of the spheres, so $AC=2+1=3$. $CE$ is the shortest length between the center of a small sphere and the edge of the prism, so $CE=\sqrt{2}$. Similarly, $AF=2\sqrt{2}$. Since $CEFB$ is a rectangle, $BF=CE=\sqrt{2}$. Since $AF=2\sqrt{2}$, $AB=AF - BF = \sqrt{2}$. Then, $BC=\sqrt{3^2-\sqrt2^2}=\sqrt{7}=EF$. $DE$ is the length from $C$ to the top of the prism or $1$. Thus, $DF=DE+EF=1+\sqrt{7}$. The prism is symmetrical, so $h=2DF=\boxed{\textbf{(A)}}$

(Solution by BJHHar)

Solution 3

take a cross section and see that h is made up of two radii of the circle plus some radical expression. the only choice satisfying this condition is (a)

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png