Difference between revisions of "2014 AMC 12B Problems/Problem 13"

(Added templates)
m
Line 16: Line 16:
 
<cmath>b^2-3b+1=0 \implies b = \boxed{\textbf{(C)} \ \frac{3+\sqrt{5}}{2}}</cmath>
 
<cmath>b^2-3b+1=0 \implies b = \boxed{\textbf{(C)} \ \frac{3+\sqrt{5}}{2}}</cmath>
  
 +
== See also ==
 
{{AMC12 box|year=2014|ab=B|num-b=12|num-a=14}}
 
{{AMC12 box|year=2014|ab=B|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:24, 22 February 2014

Problem

Real numbers $a$ and $b$ are chosen with $1<a<b$ such that no triangle with positive area has side lengths $1$, $a$, and $b$ or $\frac{1}{b}$, $\frac{1}{a}$, and $1$. What is the smallest possible value of $b$?

$\textbf{(A)}\ \frac{3+\sqrt{3}}{2}\qquad\textbf{(B)}\ \frac{5}{2}\qquad\textbf{(C)}\ \frac{3+\sqrt{5}}{2}\qquad\textbf{(D)}}\ \frac{3+\sqrt{6}}{2}\qquad\textbf{(E)}\ 3$ (Error compiling LaTeX. Unknown error_msg)

Solution

Notice that $1>\frac{1}{a}>\frac{1}{b}$. Using the triangle inequality, we find \[a+1 > b \implies a>b-1\] \[\frac{1}{a}+\frac{1}{b} > 1\] In order for us the find the lowest possible value for $b$, we try to create two degenerate triangles where the sum of the smallest two sides equals the largest side. Thus we get \[a=b-1\] and \[\frac{1}{a} + \frac{1}{b}=1\] Substituting, we get \[\frac{2b-1}{b(b-1)} = 1\] Solving for $b$ using the quadratic equation, we get \[b^2-3b+1=0 \implies b = \boxed{\textbf{(C)} \ \frac{3+\sqrt{5}}{2}}\]

See also

2014 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png