2014 USAJMO Problems/Problem 1

Revision as of 17:33, 29 April 2014 by ChiefShoe (talk | contribs) (Solution)

Problem

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[\min{\left (\frac{10a^2-5a+1}{b^2-5b+1},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )}\leq abc\]

Solution

Notice $\dfrac{10a^2 - 5a + 1}{a^2 - 5a + 10} \le a^3$ rearranges to $(a-1)^5 \ge 0$, obvious. Therefore \[\left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right ) \le (abc)^3\] so \[\min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc.\]

Headline text

Invalid username
Login to AoPS