2015 AIME II Problems/Problem 12

Revision as of 10:26, 27 March 2015 by Hesa57 (talk | contribs)

Problem

There are $2^{10} = 1024$ possible 10-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than 3 adjacent letters that are identical.

Solution

The solution is a simple recursion:

We have three cases for the ending of a string: three in a row, two in a row, and a single:

...AAA $(1)$ ...BAA $(2)$ ...BBA $(3)$

For case $(1)$, we could only add a B to the end, making it a case $(3)$. For case $(2)$, we could add an A or a B to the end, making it a case $(1)$ if you add an A, or a case $(3)$ if you add a B. For case $(3)$, we could add an A or a B to the end, making it a case $(2)$ or a case $(3)$.

Let us create three series to represent the number of permutations for each case: $\{a\}$, $\{b\}$, and $\{c\}$ representing case $(1)$, $(2)$, and $(3)$ respectively.

The series have the following relationship:

$a_n=b_{n-1}$ $b_n=c_{n-1}$ $c_n=c_{n-1}+a_{n-1}+b_{n-1}$

For $n=3$: $a_3$ and $b_3$ both equal $2$, $c_3=4$. With some simple math, we have: $a_{10}=88$, $b_{10}=162$, and $c_{10}=298$. Summing the three up we have our solution: $88+162+298=548$.

See also

2015 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png