Difference between revisions of "2015 AIME II Problems/Problem 6"

Line 38: Line 38:
==See also==
{{AIME box|year=2015|n=II|num-b=5|num-a=7}}
{{MAA Notice}}

Revision as of 10:15, 27 March 2015


Steve says to Jon, "I am thinking of a polynomial whose roots are all positive integers. The polynomial has the form $P(x) = 2x^3-2ax^2+(a^2-81)x-c$ for some positive integers $a$ and $c$. Can you tell me the values of $a$ and $c$?"

After some calculations, Jon says, "There is more than one such polynomial."

Steve says, "You're right. Here is the value of $a$." He writes down a positive integer and asks, "Can you tell me the value of $c$?"

Jon says, "There are still two possible values of $c$."

Find the sum of the two possible values of $c$.


We call the three roots (some may be equal to one another) $x_1$, $x_2$, and $x_3$. Using Vieta's formulas, we get $x_1+x_2+x_3 = a$, $x_1 \cdot x_2+x_1 \cdot x_3+x_2 \cdot x_3 = \frac{a^2-81}{2}$, and $x_1 \cdot x_2 \cdot x_3 = \frac{c}{2}$.

Squaring our first equation we get $x_1^2+x_2^2+x_3^2+2 \cdot x_1 \cdot x_2+2 \cdot x_1 \cdot x_3+2 \cdot x_2 \cdot x_3 = a^2$.

We can then subtract twice our second equation to get $x_1^2+x_2^2+x_3^2 = a^2-2 \cdot \frac{a^2-81}{2}$.

Simplifying the right side:

$a^2-2 \cdot \frac{a^2-81}{2}$



So, we know $x_1^2+x_2^2+x_3^2 = 81$.

We can then list out all the triples of positive integers whose squares sum to $81$:

We get $(1, 4, 8)$, $(3, 6, 6)$, and $(4, 4, 7)$.

These triples give $a$ values of $13$, $15$, and $15$, respectively, and $c$ values of $64$, $216$, and $224$, respectively.

We know that Jon still found two possible values of $c$ when Steve told him the $a$ value, so the $a$ value must be $15$. Thus, the two $c$ values are $216$ and $224$, which sum to $\boxed{\text{440}}$.


See also

2015 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS