2015 AIME I Problems/Problem 10

Revision as of 15:00, 21 March 2015 by Mathwizn (talk | contribs) (Solution 3)

Problem

Let $f(x)$ be a third-degree polynomial with real coefficients satisfying \[|f(1)|=|f(2)|=|f(3)|=|f(5)|=|f(6)|=|f(7)|=12.\] Find $|f(0)|$.

Solution

Let $f(x)$ = $ax^3+bx^2+cx+d$. Since $f(x)$ is a third degree polynomial, it can have at most two bends in it where it goes from up to down, or from down to up. By drawing a coordinate axis, and two lines representing 12 and -12, it is easy to see that f(1)=f(5)=f(6), and f(2)=f(3)=f(7); otherwise more bends would be required in the graph. Since only the absolute value of f(0) is required, there is no loss of generalization by stating that f(1)=12, and f(2)=-12. This provides the following system of equations. \[a +     b +   c +   d =  12\] \[8a +   4b + 2c +   d = -12\] \[27a +   9b + 3c +   d = -12\] \[125a + 25b + 5c +   d =  12\] \[216a + 36b + 6c +   d =  12\] \[343a + 49b + 7c +   d = -12\] Using any four of these functions as a system of equations yields $f(0) = 072$


Solution 2

Express $f(x)$ in terms of powers of $(x-4)$: \[f(x) = a(x-4)^3 + b(x-4)^2 + c(x-4) + d\] By the same argument as in the first Solution, we see that $f(x)$ is an odd function about the line $x=4$, so its coefficients $b$ and $d$ are 0. From there it is relatively simple to solve $f(2)=f(3)=-12$ (as in the above solution, but with a smaller system of equations): \[a(1)^3 + c(1) = -12\] \[a(2)^3 + c(2) = -12\] $a=2$ and $c=-14$ \[|f(0)| = |2(-4)^3 - 14(-4)| = 072\]

Solution 3

Without loss of generality, let $f(1) = 12$. (If $f(1) = -12$, then take $-f(x)$ as the polynomial, which leaves $|f(0)|$ unchanged.) Because $f$ is third-degree, write \[f(x) - 12 = a(x - 1)(x - b)(x - c)\] \[f(x) + 12 = a(x - d)(x - e)(x - f)\] where $\{b, c, d, e, f \}$ clearly must be a permutation of $\{2, 3, 5, 6, 7\}$ from the given condition. Thus $b + c + d + e + f = 2 + 3 + 5 + 6 + 7 = 23.$ However, subtracting the two equations gives $-24 = a[(x - 1)(x - b)(x - c) - (x - d)(x - e)(x - f)]$, so comparing $x^2$ coefficients gives $1 + b + c = d + e + f$ and thus both values equal to $\dfrac{24}{2} = 12$. As a result, $\{b, c \} = \{5, 6 \}$. As a result, $-24 = a (12)$ and so $a = -2$. Now, we easily deduce that $f(0) = (-2) \cdot (-1) \cdot (-5) \cdot (-6) + 12 = 72,$ and so removing the without loss of generality gives $|f(0)| = \boxed(072)$, which is our answer.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png