GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2015 AMC 10A Problems"

(Problem 14)
m
(41 intermediate revisions by 17 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2015|ab=A}}
 
==Problem 1==
 
==Problem 1==
  
What is the value of <math>(2^0-1+5^2-0)^{-1}\times5?</math>
+
What is the value of <math>(2^0-1+5^2+0)^{-1}\times5?</math>
  
<math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25</math>
+
<math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25</math>
  
 
[[2015 AMC 10A  Problems/Problem 1|Solution]]
 
[[2015 AMC 10A  Problems/Problem 1|Solution]]
Line 11: Line 12:
 
A box contains a collection of triangular and square tiles. There are <math>25</math> tiles in the box, containing <math>84</math> edges total. How many square tiles are there in the box?
 
A box contains a collection of triangular and square tiles. There are <math>25</math> tiles in the box, containing <math>84</math> edges total. How many square tiles are there in the box?
  
<math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}}\ 9\qquad\textbf{(E)}\ 11</math>
+
<math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11</math>
  
 
[[2015 AMC 10A  Problems/Problem 2|Solution]]
 
[[2015 AMC 10A  Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==
Ann made a 3-step staircase using 18 toothpicks. How many toothpicks does she need to add to complete a 5-step staircase?
+
Ann made a 3-step staircase using 18 toothpicks as shown in the figure. How many toothpicks does she need to add to complete a 5-step staircase?
  
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}}\ 22\qquad\textbf{(E)}\ 24</math>
+
<asy>
 +
unitsize(40);
 +
for(int i=0; i<3; i+=1)
 +
{
 +
draw((0,i+0.05)--(0,i+0.95));
 +
draw((i+0.05,0)--(i+0.95,0));
 +
for(int j=0; j<3-i; j+=1)
 +
{
 +
draw((i+1,j+0.05)--(i+1,j+0.95));
 +
draw((i+0.05,j+1)--(i+0.95,j+1));
 +
}
 +
}
 +
</asy>
 +
 
 +
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24</math>
  
 
[[2015 AMC 10A  Problems/Problem 3|Solution]]
 
[[2015 AMC 10A  Problems/Problem 3|Solution]]
Line 26: Line 41:
 
Pablo, Sofia, and Mia got some candy eggs at a party.  Pablo had three times as many eggs as Sofia, and Sofia had twice as many eggs as Mia.  Pablo decides to give some of his eggs to Sofia and Mia so that all three will have the same number of eggs.  What fraction of his eggs should Pablo give to Sofia?
 
Pablo, Sofia, and Mia got some candy eggs at a party.  Pablo had three times as many eggs as Sofia, and Sofia had twice as many eggs as Mia.  Pablo decides to give some of his eggs to Sofia and Mia so that all three will have the same number of eggs.  What fraction of his eggs should Pablo give to Sofia?
  
<math> \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}</math>
+
<math> \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}</math>
  
 
[[2015 AMC 10A  Problems/Problem 4|Solution]]
 
[[2015 AMC 10A  Problems/Problem 4|Solution]]
Line 33: Line 48:
 
Mr. Patrick teaches math to <math> 15 </math> students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was <math> 80 </math>. After he graded Payton's test, the test average became <math> 81 </math>. What was Payton's score on the test?
 
Mr. Patrick teaches math to <math> 15 </math> students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was <math> 80 </math>. After he graded Payton's test, the test average became <math> 81 </math>. What was Payton's score on the test?
  
<math> \textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}}\ 94\qquad\textbf{(E)}\ 95 </math>
+
<math> \textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95 </math>
  
 
[[2015 AMC 10A  Problems/Problem 5|Solution]]
 
[[2015 AMC 10A  Problems/Problem 5|Solution]]
Line 41: Line 56:
 
The sum of two positive numbers is <math> 5 </math> times their difference. What is the ratio of the larger number to the smaller number?
 
The sum of two positive numbers is <math> 5 </math> times their difference. What is the ratio of the larger number to the smaller number?
  
<math> \textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}}\ 2 \qquad\textbf{(E)}\ \frac{5}{2} </math>
+
<math> \textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2} </math>
  
 
[[2015 AMC 10A  Problems/Problem 6|Solution]]
 
[[2015 AMC 10A  Problems/Problem 6|Solution]]
Line 49: Line 64:
 
How many terms are there in the arithmetic sequence <math>13</math>, <math>16</math>, <math>19</math>, . . ., <math>70</math>, <math>73</math>?
 
How many terms are there in the arithmetic sequence <math>13</math>, <math>16</math>, <math>19</math>, . . ., <math>70</math>, <math>73</math>?
  
<math> \textbf{(A)}\ 20\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}}\ 60\qquad\textbf{(E)}\ 61 </math>
+
<math> \textbf{(A)}\ 20\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 61 </math>
  
 
[[2015 AMC 10A  Problems/Problem 7|Solution]]
 
[[2015 AMC 10A  Problems/Problem 7|Solution]]
Line 56: Line 71:
 
Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be <math>2</math> : <math>1</math>?
 
Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be <math>2</math> : <math>1</math>?
 
   
 
   
<math> \textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}}\ 6\qquad\textbf{(E)}\ 8 </math>
+
<math> \textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8 </math>
  
 
[[2015 AMC 10A  Problems/Problem 8|Solution]]
 
[[2015 AMC 10A  Problems/Problem 8|Solution]]
Line 63: Line 78:
 
Two right circular cylinders have the same volume. The radius of the second cylinder is <math>10\%</math> more than the radius of the first. What is the relationship between the heights of the two cylinders?
 
Two right circular cylinders have the same volume. The radius of the second cylinder is <math>10\%</math> more than the radius of the first. What is the relationship between the heights of the two cylinders?
  
<math>\textbf{(A)}\  \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\  \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ less than the first.} \\ \textbf{(D)}}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}</math>
+
<math>\textbf{(A)}\  \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\  \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ more than the first.} \\ \textbf{(D)}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}</math>
  
 
[[2015 AMC 10A  Problems/Problem 9|Solution]]
 
[[2015 AMC 10A  Problems/Problem 9|Solution]]
Line 71: Line 86:
 
How many rearrangements of <math>abcd</math> are there in which no two adjacent letters are also adjacent letters in the alphabet?  For example, no such rearrangements could include either <math>ab</math> or <math>ba</math>.
 
How many rearrangements of <math>abcd</math> are there in which no two adjacent letters are also adjacent letters in the alphabet?  For example, no such rearrangements could include either <math>ab</math> or <math>ba</math>.
  
<math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 3\qquad\textbf{(E)}\ 4</math>
+
<math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4</math>
  
 
[[2015 AMC 10A  Problems/Problem 10|Solution]]
 
[[2015 AMC 10A  Problems/Problem 10|Solution]]
Line 79: Line 94:
 
The ratio of the length to the width of a rectangle is <math>4</math> : <math>3</math>. If the rectangle has diagonal of length <math>d</math>, then the area may be expressed as <math>kd^2</math> for some constant <math>k</math>. What is <math>k</math>?
 
The ratio of the length to the width of a rectangle is <math>4</math> : <math>3</math>. If the rectangle has diagonal of length <math>d</math>, then the area may be expressed as <math>kd^2</math> for some constant <math>k</math>. What is <math>k</math>?
  
<math>\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{7}\qquad\textbf{(C)}\ \frac{12}{25}\qquad\textbf{(D)}}\ \frac{16}{25}\qquad\textbf{(E)}\ \frac{3}{4}</math>
+
<math>\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{7}\qquad\textbf{(C)}\ \frac{12}{25}\qquad\textbf{(D)}\ \frac{16}{25}\qquad\textbf{(E)}\ \frac{3}{4}</math>
  
 
[[2015 AMC 10A Problems/Problem 11|Solution]]
 
[[2015 AMC 10A Problems/Problem 11|Solution]]
Line 87: Line 102:
  
 
<math> \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} </math>
 
<math> \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 12|Solution]]
  
 
==Problem 13==
 
==Problem 13==
Line 92: Line 109:
  
 
<math> \textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7 </math>
 
<math> \textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7 </math>
 +
 +
[[2015 AMC 10A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
 +
 +
The diagram below shows the circular face of a clock with radius <math>20</math> cm and a circular disk with radius <math>10</math> cm externally tangent to the clock face at <math>12</math> o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?
 +
 +
<asy>
 +
size(170);
 +
defaultpen(linewidth(0.9)+fontsize(13pt));
 +
draw(unitcircle^^circle((0,1.5),0.5));
 +
path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle;
 +
for(int i=1;i<=12;i=i+1)
 +
{
 +
draw(0.9*dir(90-30*i)--dir(90-30*i));
 +
label("$"+(string) i+"$",0.78*dir(90-30*i));
 +
}
 +
dot(origin);
 +
draw(shift((0,1.87))*arrow);
 +
draw(arc(origin,1.5,68,30),EndArrow(size=12));
 +
</asy>
 +
 +
<math> \textbf{(A) }\mathrm{2 o'clock} \qquad\textbf{(B) }\mathrm{3 o'clock} \qquad\textbf{(C) }\mathrm{4 o'clock} \qquad\textbf{(D) }\mathrm{6 o'clock} \qquad\textbf{(E) }\mathrm{8 o'clock} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
 +
Consider the set of all fractions <math>\tfrac{x}{y},</math> where <math>x</math> and <math>y</math> are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by <math>1</math>, the value of the fraction is increased by <math>10\%</math>?
 +
 +
<math> \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinitely many} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
Line 101: Line 146:
  
 
<math> \textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30} </math>
 
<math> \textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 16|Solution]]
  
 
==Problem 17==
 
==Problem 17==
 +
A line that passes through the origin intersects both the line <math>x=1</math> and the line <math>y=1+\frac{\sqrt{3}}{3}x</math>. The three lines create an equilateral triangle. What is the perimeter of the triangle?
 +
 +
<math> \textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }2+2\sqrt{3}\qquad\textbf{(C) }6\qquad\textbf{(D) }3+2\sqrt{3}\qquad\textbf{(E) }6+\frac{\sqrt{3}}{3} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
 +
Hexadecimal (base-16) numbers are written using numeric digits <math>0</math> through <math>9</math> as well as the letters <math>A</math> through <math>F</math> to represent <math>10</math> through <math>15</math>. Among the first <math>1000</math> positive integers, there are <math>n</math> whose hexadecimal representation contains only numeric digits. What is the sum of the digits of <math>n</math>?
 +
 +
<math> \textbf{(A) }17\qquad\textbf{(B) }18\qquad\textbf{(C) }19\qquad\textbf{(D) }20\qquad\textbf{(E) }21 </math>
 +
 +
[[2015 AMC 10A Problems/Problem 18|Solution]]
  
 
==Problem 19==
 
==Problem 19==
 +
The isosceles right triangle <math>ABC</math> has right angle at <math>C</math> and area <math>12.5</math>. The rays trisecting <math>\angle ACB</math> intersect <math>AB</math> at <math>D</math> and <math>E</math>. What is the area of <math>\bigtriangleup CDE</math>?
 +
 +
<math> \textbf{(A) }\dfrac{5\sqrt{2}}{3}\qquad\textbf{(B) }\dfrac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\dfrac{15\sqrt{3}}{8}\qquad\textbf{(D) }\dfrac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\dfrac{25}{6} </math>
 +
 +
[[2015 AMC 10A Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
  
A rectangle has area <math>A</math> <math>\text{cm}^2</math> and perimeter <math>P</math> <math>\text{cm}</math>, where <math>A</math> and <math>P</math> are positive integers. Which of the following numbers cannot equal <math>A+P</math>?
+
A rectangle with positive integer side lengths in <math>\text{cm}</math> has area <math>A</math> <math>\text{cm}^2</math> and perimeter <math>P</math> <math>\text{cm}</math>. Which of the following numbers cannot equal <math>A+P</math>?
 +
 
 +
<math> \textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108 </math>
 +
 
 +
===NOTE:===
 +
As it originally appeared in the AMC 10, this problem was stated incorrectly and had no answer; it has been modified here to be solvable. This is the original question:
 +
 
 +
A rectangle with side lengths in <math>\text{cm}</math> has an area of integer <math>A</math> <math>\text{cm}^2</math> and a perimeter of integer <math>P</math> <math>\text{cm}</math>. Which of the following numbers cannot equal <math>A+P</math>?
  
 
<math> \textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108 </math>
 
<math> \textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108 </math>
 +
  
 
[[2015 AMC 10A  Problems/Problem 20|Solution]]
 
[[2015 AMC 10A  Problems/Problem 20|Solution]]
  
 
==Problem 21==
 
==Problem 21==
 +
Tetrahedron <math>ABCD</math> has <math>AB=5</math>, <math>AC=3</math>, <math>BC=4</math>, <math>BD=4</math>, <math>AD=3</math>, and <math>CD=\tfrac{12}5\sqrt2</math>.  What is the volume of the tetrahedron?
 +
 +
<math>\textbf{(A) }3\sqrt2\qquad\textbf{(B) }2\sqrt5\qquad\textbf{(C) }\dfrac{24}5\qquad\textbf{(D) }3\sqrt3\qquad\textbf{(E) }\dfrac{24}5\sqrt2</math>
 +
 +
[[2015 AMC 10A Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
Line 128: Line 203:
 
==Problem 23==
 
==Problem 23==
  
The zeros of the function <math>f(x)=x^2-ax+2a</math> are integers. What is the sum of the possible values of <math>a</math>?
+
The zeroes of the function <math>f(x)=x^2-ax+2a</math> are integers. What is the sum of the possible values of <math>a</math>?
  
 
<math> \textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18</math>
 
<math> \textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18</math>
Line 138: Line 213:
  
 
<math>\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
 
<math>\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
 +
 +
[[2015 AMC 10A Problems/Problem 24|Solution]]
  
 
==Problem 25==
 
==Problem 25==
Let <math>S</math> be a square of side length <math>1</math>.  Two points are chosen independently at random on the sides of <math>S</math>.  The probability that the straight-line distance between the points is at least <math>\tfrac12</math> is <math>\tfrac{a-b\pi}c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers with <math>\gcd(a,b,c)=1</math>.  What is <math>a+b+c</math>?
+
Let <math>S</math> be a square of side length <math>1</math>.  Two points are chosen at random on the sides of <math>S</math>.  The probability that the straight-line distance between the points is at least <math>\tfrac12</math> is <math>\tfrac{a-b\pi}c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers with <math>\gcd(a,b,c)=1</math>.  What is <math>a+b+c</math>?
  
 
<math>\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
 
<math>\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
  
== See also ==
+
[[2015 AMC 10A Problems/Problem 25|Solution]]
* [[AMC Problems and Solutions]]
+
 
 +
==See also==
 +
{{AMC10 box|year=2015|ab=A|before=[[2014 AMC 10B Problems]]|after=[[2015 AMC 10B Problems]]}}
 +
* [[AMC 10]]
 +
* [[AMC 10 Problems and Solutions]]
 +
* [[2015 AMC 10A]]
 +
* [[Mathematics competition resources]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:47, 19 February 2020

2015 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $(2^0-1+5^2+0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$

Solution

Problem 2

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$

Solution

Problem 3

Ann made a 3-step staircase using 18 toothpicks as shown in the figure. How many toothpicks does she need to add to complete a 5-step staircase?

[asy] unitsize(40); for(int i=0; i<3; i+=1) { draw((0,i+0.05)--(0,i+0.95)); draw((i+0.05,0)--(i+0.95,0)); for(int j=0; j<3-i; j+=1) { draw((i+1,j+0.05)--(i+1,j+0.95)); draw((i+0.05,j+1)--(i+0.95,j+1)); } } [/asy]

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24$

Solution

Problem 4

Pablo, Sofia, and Mia got some candy eggs at a party. Pablo had three times as many eggs as Sofia, and Sofia had twice as many eggs as Mia. Pablo decides to give some of his eggs to Sofia and Mia so that all three will have the same number of eggs. What fraction of his eggs should Pablo give to Sofia?

$\textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$

Solution

Problem 5

Mr. Patrick teaches math to $15$ students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was $80$. After he graded Payton's test, the test average became $81$. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95$

Solution

Problem 6

The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller number?

$\textbf{(A)}\ \frac{5}{4}\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ \frac{9}{5}\qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac{5}{2}$

Solution

Problem 7

How many terms are there in the arithmetic sequence $13$, $16$, $19$, . . ., $70$, $73$?

$\textbf{(A)}\ 20\qquad\textbf{(B)}\ 21\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 61$

Solution

Problem 8

Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2$ : $1$?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

Solution

Problem 9

Two right circular cylinders have the same volume. The radius of the second cylinder is $10\%$ more than the radius of the first. What is the relationship between the heights of the two cylinders?

$\textbf{(A)}\  \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\  \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ more than the first.} \\ \textbf{(D)}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}$

Solution

Problem 10

How many rearrangements of $abcd$ are there in which no two adjacent letters are also adjacent letters in the alphabet? For example, no such rearrangements could include either $ab$ or $ba$.

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution

Problem 11

The ratio of the length to the width of a rectangle is $4$ : $3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?

$\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{7}\qquad\textbf{(C)}\ \frac{12}{25}\qquad\textbf{(D)}\ \frac{16}{25}\qquad\textbf{(E)}\ \frac{3}{4}$

Solution

Problem 12

Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$?

$\textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi}$

Solution

Problem 13

Claudia has 12 coins, each of which is a 5-cent coin or a 10-cent coin. There are exactly 17 different values that can be obtained as combinations of one or more of her coins. How many 10-cent coins does Claudia have?

$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$

Solution

Problem 14

The diagram below shows the circular face of a clock with radius $20$ cm and a circular disk with radius $10$ cm externally tangent to the clock face at $12$ o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?

[asy] size(170); defaultpen(linewidth(0.9)+fontsize(13pt)); draw(unitcircle^^circle((0,1.5),0.5)); path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle; for(int i=1;i<=12;i=i+1) { draw(0.9*dir(90-30*i)--dir(90-30*i)); label("$"+(string) i+"$",0.78*dir(90-30*i)); } dot(origin); draw(shift((0,1.87))*arrow); draw(arc(origin,1.5,68,30),EndArrow(size=12)); [/asy]

$\textbf{(A) }\mathrm{2 o'clock} \qquad\textbf{(B) }\mathrm{3 o'clock} \qquad\textbf{(C) }\mathrm{4 o'clock} \qquad\textbf{(D) }\mathrm{6 o'clock} \qquad\textbf{(E) }\mathrm{8 o'clock}$

Solution

Problem 15

Consider the set of all fractions $\tfrac{x}{y},$ where $x$ and $y$ are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by $1$, the value of the fraction is increased by $10\%$?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 16

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$?

$\textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30}$

Solution

Problem 17

A line that passes through the origin intersects both the line $x=1$ and the line $y=1+\frac{\sqrt{3}}{3}x$. The three lines create an equilateral triangle. What is the perimeter of the triangle?

$\textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }2+2\sqrt{3}\qquad\textbf{(C) }6\qquad\textbf{(D) }3+2\sqrt{3}\qquad\textbf{(E) }6+\frac{\sqrt{3}}{3}$

Solution

Problem 18

Hexadecimal (base-16) numbers are written using numeric digits $0$ through $9$ as well as the letters $A$ through $F$ to represent $10$ through $15$. Among the first $1000$ positive integers, there are $n$ whose hexadecimal representation contains only numeric digits. What is the sum of the digits of $n$?

$\textbf{(A) }17\qquad\textbf{(B) }18\qquad\textbf{(C) }19\qquad\textbf{(D) }20\qquad\textbf{(E) }21$

Solution

Problem 19

The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle ACB$ intersect $AB$ at $D$ and $E$. What is the area of $\bigtriangleup CDE$?

$\textbf{(A) }\dfrac{5\sqrt{2}}{3}\qquad\textbf{(B) }\dfrac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\dfrac{15\sqrt{3}}{8}\qquad\textbf{(D) }\dfrac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\dfrac{25}{6}$

Solution

Problem 20

A rectangle with positive integer side lengths in $\text{cm}$ has area $A$ $\text{cm}^2$ and perimeter $P$ $\text{cm}$. Which of the following numbers cannot equal $A+P$?

$\textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108$

NOTE:

As it originally appeared in the AMC 10, this problem was stated incorrectly and had no answer; it has been modified here to be solvable. This is the original question:

A rectangle with side lengths in $\text{cm}$ has an area of integer $A$ $\text{cm}^2$ and a perimeter of integer $P$ $\text{cm}$. Which of the following numbers cannot equal $A+P$?

$\textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108$


Solution

Problem 21

Tetrahedron $ABCD$ has $AB=5$, $AC=3$, $BC=4$, $BD=4$, $AD=3$, and $CD=\tfrac{12}5\sqrt2$. What is the volume of the tetrahedron?

$\textbf{(A) }3\sqrt2\qquad\textbf{(B) }2\sqrt5\qquad\textbf{(C) }\dfrac{24}5\qquad\textbf{(D) }3\sqrt3\qquad\textbf{(E) }\dfrac{24}5\sqrt2$

Solution

Problem 22

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?

$\textbf{(A)}\dfrac{47}{256}\qquad\textbf{(B)}\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$

Solution

Problem 23

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of the possible values of $a$?

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

Solution

Problem 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

Solution

Problem 25

Let $S$ be a square of side length $1$. Two points are chosen at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers with $\gcd(a,b,c)=1$. What is $a+b+c$?

$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

Solution

See also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2014 AMC 10B Problems
Followed by
2015 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png