2015 AMC 10A Problems/Problem 21

Revision as of 19:28, 1 September 2019 by Firebolt360 (talk | contribs) (Solution 2)
The following problem is from both the 2015 AMC 12A #16 and 2015 AMC 10A #21, so both problems redirect to this page.

Problem

Tetrahedron $ABCD$ has $AB=5$, $AC=3$, $BC=4$, $BD=4$, $AD=3$, and $CD=\tfrac{12}5\sqrt2$. What is the volume of the tetrahedron?

$\textbf{(A) }3\sqrt2\qquad\textbf{(B) }2\sqrt5\qquad\textbf{(C) }\dfrac{24}5\qquad\textbf{(D) }3\sqrt3\qquad\textbf{(E) }\dfrac{24}5\sqrt2$

Solutions

Solution 1

Drop altitudes of triangle $ABC$ and triangle $ABD$ down from $C$ and $D$, respectively. Both will hit the same point; let this point be $T$. Because both triangle $ABC$ and triangle $ABD$ are 3-4-5 triangles, $CT = DT = \dfrac{3\cdot4}{5} = \dfrac{12}{5}$. Because $CT^{2} + DT^{2} = 2\left(\frac{12}{5}\right)^{2} = \left(\frac{12}{5}\sqrt{2}\right)^{2} = CD^{2}$, it follows that the $CTD$ is a right triangle, meaning that $\angle CTD = 90^\circ$, and it follows that planes $ABC$ and $ABD$ are perpendicular to each other. Now, we can treat $ABC$ as the base of the tetrahedron and $TD$ as the height. Thus, the desired volume is \[V = \dfrac{1}{3} Bh = \dfrac{1}{3}\cdot[ABC]\cdot TD = \dfrac{1}{3} \cdot 6 \cdot \dfrac{12}{5} = \dfrac{24}{5}\] which is answer $\boxed{\textbf{(C) } \dfrac{24}{5}}$

See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2015 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png