Difference between revisions of "2015 AMC 10B Problems/Problem 19"

m (Solution 1)
m (Solution 3)
(5 intermediate revisions by 2 users not shown)
Line 75: Line 75:
 
~LegionOfAvatars
 
~LegionOfAvatars
  
==Solution 3 - Fakesolve==
+
==Solution 3==
Temporarily assume that we are as dumb as samrocksnature. Then, we would misread the instructions and draw the squares inside, not outside, the triangle. In addition, we would make a plethora of ridiculous assumptions.
 
  
Our diagram would essentially be two squares intersecting in a square, such that a circle can be drawn through the two leftmost vertices of the left square and the two rightmost vertices of the right square. Since the diagonal of the square is given to be <math>12</math>, our answer is <math>12+6\sqrt{2}+6\sqrt{2} \Rightarrow \boxed{C}</math>.
+
Both solution 1 and 2 uses Pythagorean Theorem to prove <math>\triangle ABC</math> is isosceles right triangle. I'm going to prove <math>\triangle ABC</math> is isosceles right triangle without using Pythagorean Theorem. I will use geometry rotation.
 +
 
 +
<asy>
 +
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
 +
import graph; size(11.5cm);
 +
real labelscalefactor = 0.5; /* changes label-to-point distance */
 +
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
 +
pen dotstyle = black; /* point style */
 +
real xmin = -4.3, xmax = 18.7, ymin = -5.26, ymax = 6.3;  /* image dimensions */
 +
 
 +
draw((3.46,0.96)--(3.44,-3.36)--(8.02,-3.44)--cycle);
 +
draw((3.46,0.96)--(8.02,-3.44)--(12.42,1.12)--(7.86,5.52)--cycle);
 +
/* draw figures */
 +
draw((3.46,0.96)--(3.44,-3.36));
 +
draw((3.44,-3.36)--(8.02,-3.44));
 +
draw((8.02,-3.44)--(3.46,0.96));
 +
draw((3.46,0.96)--(-0.86,0.98));
 +
draw((-0.86,0.98)--(-0.88,-3.34));
 +
draw((-0.88,-3.34)--(3.44,-3.36));
 +
draw((3.46,0.96)--(8.02,-3.44));
 +
draw((8.02,-3.44)--(12.42,1.12));
 +
draw((12.42,1.12)--(7.86,5.52));
 +
draw((7.86,5.52)--(3.46,0.96));
 +
draw((5.74,-1.24)--(-0.86,0.98));
 +
draw((5.74,-1.24)--(-0.87,-1.18), linetype("4 4"));
 +
draw((5.74,-1.24)--(7.86,5.52));
 +
draw((5.74,-1.24)--(10.14,3.32), linetype("4 4"));
 +
draw(shift((5.82,-1.21))*xscale(6.99920709795045)*yscale(6.99920709795045)*arc((0,0),1,19.44457562540183,197.63600413408128), linetype("2 2"));
 +
draw((8.02,-3.44)--(-0.86,0.98));
 +
draw((3.44,-3.36)--(7.86,5.52));
 +
draw((3.44,-3.36)--(5.74,-1.24));
 +
/* dots and labels */
 +
dot((3.46,0.96),dotstyle);
 +
label("$A$", (3.2,1.06), NE * labelscalefactor);
 +
dot((3.44,-3.36),dotstyle);
 +
label("$C$", (3.14,-3.86), NE * labelscalefactor);
 +
dot((8.02,-3.44),dotstyle);
 +
label("$B$", (8.06,-3.8), NE * labelscalefactor);
 +
dot((-0.86,0.98),dotstyle);
 +
label("$Z$", (-1.34,1.12), NE * labelscalefactor);
 +
dot((-0.88,-3.34),dotstyle);
 +
label("$W$", (-1.48,-3.54), NE * labelscalefactor);
 +
dot((12.42,1.12),dotstyle);
 +
label("$X$", (12.5,1.24), NE * labelscalefactor);
 +
dot((7.86,5.52),dotstyle);
 +
label("$Y$", (7.94,5.64), NE * labelscalefactor);
 +
dot((5.74,-1.24),dotstyle);
 +
label("$O$", (5.52,-1.82), NE * labelscalefactor);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
</asy>
 +
 
 +
Let <math>O</math> be the the midpoint of <math>AB</math>. The perpendicular bisector of line <math>WZ</math> and <math>XY</math> will meet at <math>O</math>. Thus <math>O</math> is the center of the circle points <math>X</math>, <math>Y</math>, <math>Z</math>, and <math>W</math> lies on.
 +
 
 +
<math>\angle ZAC=\angle OAY=90^{\circ}</math>, <math>\angle ZAC+\angle BAC=\angle OAY+\angle BAC</math>, <math>\angle ZAB=\angle CAY</math>, and <math>AZ=AC</math>, <math>AB=AY</math>, <math>\triangle AZB \cong \triangle ACY</math> by <math>SAS</math>, <math>BZ=YC</math>. Because <math>AZ \perp AC</math>,  <math>\triangle ACY</math> is a <math>90^{\circ}</math> rotation about point <math>A</math> of <math>\triangle AZB</math>. So, <math>BZ \perp YC</math>.
 +
 
 +
Because <math>OZ</math> and <math>OY</math> is the radius of <math>\odot O</math>, <math>OZ=OY</math>. Because <math>O</math> is the midpoint of hypotenuse <math>AB</math>, <math>OB=OC</math>, <math>BZ=CY</math>, <math>\triangle OBZ \cong \triangle OCY</math> by <math>SSS</math>. Because <math>BZ \perp CY</math>,  <math>\triangle OCY</math> is a <math>90^{\circ}</math> rotation about point <math>O</math> of <math>\triangle OBZ</math>. So, <math>OB \perp OC</math>.
 +
 
 +
<math>\angle COB = 90^{\circ}</math>, <math>OC=OB</math>, <math>\triangle OCB</math> is isosceles right triangle, <math>\angle ABC=\angle OBC=45^{\circ}</math>. So, <math>\triangle ABC</math> is isosceles right triangle.
 +
 
 +
Therefore, <math>AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}</math>, the perimeter is <math>\boxed{\textbf{(C)}\ 12+12\sqrt{2}}</math>.
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
  
 
==See Also==
 
==See Also==

Revision as of 09:25, 28 December 2021

Problem

In $\triangle{ABC}$, $\angle{C} = 90^{\circ}$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X, Y, Z$, and $W$ lie on a circle. What is the perimeter of the triangle?

$\textbf{(A) }12+9\sqrt{3}\qquad\textbf{(B) }18+6\sqrt{3}\qquad\textbf{(C) }12+12\sqrt{2}\qquad\textbf{(D) }30\qquad\textbf{(E) }32$

Solution 1

The center of the circle lies on the intersection between the perpendicular bisectors of chords $ZW$ and $YX$. Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be $O$. Draw perpendiculars to $ZW$ and $YX$ from $O$, and connect $OZ$ and $OY$. $OY^2=6^2+12^2=180$. Let $AC=a$ and $BC=b$. Then $\left(\dfrac{a}{2}\right)^2+\left(a+\dfrac{b}{2}\right)^2=OZ^2=OY^2=180$. Simplifying this gives $\dfrac{a^2}{4}+\dfrac{b^2}{4}+a^2+ab=180$. But by Pythagorean Theorem on $\triangle ABC$, we know $a^2+b^2=144$, because $AB=12$. Thus $\dfrac{a^2}{4}+\dfrac{b^2}{4}=\dfrac{144}{4}=36$. So our equation simplifies further to $a^2+ab=144$. However $a^2+b^2=144$, so $a^2+ab=a^2+b^2$, which means $ab=b^2$, or $a=b$. Aha! This means $\triangle ABC$ is just an isosceles right triangle, so $AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}$, and thus the perimeter is $\boxed{\textbf{(C)}\ 12+12\sqrt{2}}$. [asy]   /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(11.5cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -4.3, xmax = 18.7, ymin = -5.26, ymax = 6.3;  /* image dimensions */   draw((3.46,0.96)--(3.44,-3.36)--(8.02,-3.44)--cycle);  draw((3.46,0.96)--(8.02,-3.44)--(12.42,1.12)--(7.86,5.52)--cycle);   /* draw figures */ draw((3.46,0.96)--(3.44,-3.36));  draw((3.44,-3.36)--(8.02,-3.44));  draw((8.02,-3.44)--(3.46,0.96));  draw((3.46,0.96)--(-0.86,0.98));  draw((-0.86,0.98)--(-0.88,-3.34));  draw((-0.88,-3.34)--(3.44,-3.36));  draw((3.46,0.96)--(8.02,-3.44));  draw((8.02,-3.44)--(12.42,1.12));  draw((12.42,1.12)--(7.86,5.52));  draw((7.86,5.52)--(3.46,0.96));  draw((5.74,-1.24)--(-0.86,0.98));  draw((5.74,-1.24)--(-0.87,-1.18), linetype("4 4"));  draw((5.74,-1.24)--(7.86,5.52));  draw((5.74,-1.24)--(10.14,3.32), linetype("4 4"));  draw(shift((5.82,-1.21))*xscale(6.99920709795045)*yscale(6.99920709795045)*arc((0,0),1,19.44457562540183,197.63600413408128), linetype("2 2"));   /* dots and labels */ dot((3.46,0.96),dotstyle);  label("$A$", (3.2,1.06), NE * labelscalefactor);  dot((3.44,-3.36),dotstyle);  label("$C$", (3.14,-3.86), NE * labelscalefactor);  dot((8.02,-3.44),dotstyle);  label("$B$", (8.06,-3.8), NE * labelscalefactor);  dot((-0.86,0.98),dotstyle);  label("$Z$", (-1.34,1.12), NE * labelscalefactor);  dot((-0.88,-3.34),dotstyle);  label("$W$", (-1.48,-3.54), NE * labelscalefactor);  dot((12.42,1.12),dotstyle);  label("$X$", (12.5,1.24), NE * labelscalefactor);  dot((7.86,5.52),dotstyle);  label("$Y$", (7.94,5.64), NE * labelscalefactor);  dot((5.74,-1.24),dotstyle);  label("$O$", (5.52,-1.82), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  [/asy]

Solution 2

Let $AC = b$ and $BC = a$ (and we're given that $AB=12$). Draw line segments $YZ$ and $WX$. Now we have cyclic quadrilateral $WXYZ.$

This means that opposite angles sum to $180^{\circ}$. Therefore, $90 + m\angle YZA + 90 - m\angle WXB = 180$. Simplifying carefully, we get $m\angle YZA = m\angle WXB$. Similarly, $m\angle{ZYA}$ = $m\angle{XWB}$.

That means $\triangle ZYA \sim \triangle XWB$.

Setting up proportions, $\dfrac{b}{12}=\dfrac{12}{a+b}.$ Cross-multiplying we get: $b^2+ab=12^2$

But also, by Pythagoras, $b^2+a^2=12^2$, so $ab=a^2 \Rightarrow a=b$

Therefore, $\triangle ABC$ is an isosceles right triangle. $AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}$, so the perimeter is \[\boxed{\textbf{(C)}\ 12+12\sqrt{2}}\]

~BakedPotato66

~LegionOfAvatars

Solution 3

Both solution 1 and 2 uses Pythagorean Theorem to prove $\triangle ABC$ is isosceles right triangle. I'm going to prove $\triangle ABC$ is isosceles right triangle without using Pythagorean Theorem. I will use geometry rotation.

[asy]   /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(11.5cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -4.3, xmax = 18.7, ymin = -5.26, ymax = 6.3;  /* image dimensions */  draw((3.46,0.96)--(3.44,-3.36)--(8.02,-3.44)--cycle);  draw((3.46,0.96)--(8.02,-3.44)--(12.42,1.12)--(7.86,5.52)--cycle);   /* draw figures */ draw((3.46,0.96)--(3.44,-3.36));  draw((3.44,-3.36)--(8.02,-3.44));  draw((8.02,-3.44)--(3.46,0.96));  draw((3.46,0.96)--(-0.86,0.98));  draw((-0.86,0.98)--(-0.88,-3.34));  draw((-0.88,-3.34)--(3.44,-3.36));  draw((3.46,0.96)--(8.02,-3.44));  draw((8.02,-3.44)--(12.42,1.12));  draw((12.42,1.12)--(7.86,5.52));  draw((7.86,5.52)--(3.46,0.96));  draw((5.74,-1.24)--(-0.86,0.98));  draw((5.74,-1.24)--(-0.87,-1.18), linetype("4 4"));  draw((5.74,-1.24)--(7.86,5.52));  draw((5.74,-1.24)--(10.14,3.32), linetype("4 4"));  draw(shift((5.82,-1.21))*xscale(6.99920709795045)*yscale(6.99920709795045)*arc((0,0),1,19.44457562540183,197.63600413408128), linetype("2 2"));  draw((8.02,-3.44)--(-0.86,0.98));  draw((3.44,-3.36)--(7.86,5.52));  draw((3.44,-3.36)--(5.74,-1.24));   /* dots and labels */ dot((3.46,0.96),dotstyle);  label("$A$", (3.2,1.06), NE * labelscalefactor);  dot((3.44,-3.36),dotstyle);  label("$C$", (3.14,-3.86), NE * labelscalefactor);  dot((8.02,-3.44),dotstyle);  label("$B$", (8.06,-3.8), NE * labelscalefactor);  dot((-0.86,0.98),dotstyle);  label("$Z$", (-1.34,1.12), NE * labelscalefactor);  dot((-0.88,-3.34),dotstyle);  label("$W$", (-1.48,-3.54), NE * labelscalefactor);  dot((12.42,1.12),dotstyle);  label("$X$", (12.5,1.24), NE * labelscalefactor);  dot((7.86,5.52),dotstyle);  label("$Y$", (7.94,5.64), NE * labelscalefactor);  dot((5.74,-1.24),dotstyle);  label("$O$", (5.52,-1.82), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  [/asy]

Let $O$ be the the midpoint of $AB$. The perpendicular bisector of line $WZ$ and $XY$ will meet at $O$. Thus $O$ is the center of the circle points $X$, $Y$, $Z$, and $W$ lies on.

$\angle ZAC=\angle OAY=90^{\circ}$, $\angle ZAC+\angle BAC=\angle OAY+\angle BAC$, $\angle ZAB=\angle CAY$, and $AZ=AC$, $AB=AY$, $\triangle AZB \cong \triangle ACY$ by $SAS$, $BZ=YC$. Because $AZ \perp AC$, $\triangle ACY$ is a $90^{\circ}$ rotation about point $A$ of $\triangle AZB$. So, $BZ \perp YC$.

Because $OZ$ and $OY$ is the radius of $\odot O$, $OZ=OY$. Because $O$ is the midpoint of hypotenuse $AB$, $OB=OC$, $BZ=CY$, $\triangle OBZ \cong \triangle OCY$ by $SSS$. Because $BZ \perp CY$, $\triangle OCY$ is a $90^{\circ}$ rotation about point $O$ of $\triangle OBZ$. So, $OB \perp OC$.

$\angle COB = 90^{\circ}$, $OC=OB$, $\triangle OCB$ is isosceles right triangle, $\angle ABC=\angle OBC=45^{\circ}$. So, $\triangle ABC$ is isosceles right triangle.

Therefore, $AC=BC=\dfrac{12}{\sqrt{2}}=6\sqrt{2}$, the perimeter is $\boxed{\textbf{(C)}\ 12+12\sqrt{2}}$.

~isabelchen

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png