Difference between revisions of "2015 AMC 10B Problems/Problem 21"

(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) }9\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }15</math>
 
<math>\textbf{(A) }9\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }15</math>
  
==Solution==
+
==Solution 1==
 
We can translate this wordy problem into this simple equation:
 
We can translate this wordy problem into this simple equation:
  
Line 22: Line 22:
  
 
Summing up we get <math>63+64+66=193</math>. The sum of the digits is <math>\boxed{\textbf{(D)}\; 13}</math>.
 
Summing up we get <math>63+64+66=193</math>. The sum of the digits is <math>\boxed{\textbf{(D)}\; 13}</math>.
 +
 +
==Solution 2==
 +
 +
We're looking for natural numbers <math>x</math> such that <math>\left \lceil{\frac{x}{5}}\right \rceil + 19 = \left \lceil{\frac{x}{2}}\right \rceil</math>.
 +
 +
Let's call <math>x = 10a + b</math>. We now have <math>2a  + \left \lceil{\frac{b}{5}}\right \rceil + 19 = 5a + \left  \lceil{\frac{b}{2}}\right \rceil</math>, or
 +
 +
<math>19 - 3a = \left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil</math>.
 +
 +
Obviously, since <math>b \le 10</math>, this will not work for any value under 6. In addition, since obviously <math>\frac{b}{2} \ge \frac{b}{5}</math>, this will not work for any value over six, so we have <math>a = 6</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil = 1.</math>
 +
 +
This can be achieved when <math>\left \lceil{\frac{b}{5}}\right \rceil = 1</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 2</math>, or when <math>\left \lceil{\frac{b}{5}}\right \rceil = 2</math> and <math>\left \lceil{\frac{b}{2}}\right \rceil = 3</math>.
 +
 +
Case One:
 +
 +
We have <math>b \le 5</math> and <math>3 \le b \le 4</math>, so <math>b = 3, 4</math>.
 +
 +
Case Two:
 +
 +
We have <math>6 \le b \le 9</math> and <math>5 \le b \le 6</math>, so <math>b = 6</math>.
 +
 +
We then have <math>63 + 64 + 66 = 193</math>, which has a digit sum of <math>\boxed{13}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}}
 
{{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:27, 25 January 2016

Problem

Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than $5$ steps left). Suppose the Dash takes $19$ fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$?

$\textbf{(A) }9\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }15$

Solution 1

We can translate this wordy problem into this simple equation:

\[\left\lceil \frac{s}{2} \right\rceil - 19 = \left\lceil \frac{s}{5} \right\rceil\]

We will proceed to solve this equation via casework.

Case 1: $\left\lceil \frac{s}{2} \right\rceil = \frac{s}{2}$

Our equation becomes $\frac{s}{2} - 19 = \frac{s}{5} + \frac{j}{5}$, where $j \in \{0,1,2,3,4\}$ Using the fact that $s$ is an integer, we quickly find that $j=1$ and $j=4$ yield $s=64$ and $s=66$, respectively.


Case 2: $\left\lceil \frac{s}{2} \right\rceil = \frac{s}{2}+\frac{1}{2}$

Our equation becomes $\frac{s}{2} +\frac{1}{2} - 19 = \frac{s}{5} + \frac{j}{5}$, where $j \in \{0,1,2,3,4\}$ Using the fact that $s$ is an integer, we quickly find that $j=2$ yields $s=63$.

Summing up we get $63+64+66=193$. The sum of the digits is $\boxed{\textbf{(D)}\; 13}$.

Solution 2

We're looking for natural numbers $x$ such that $\left \lceil{\frac{x}{5}}\right \rceil + 19 = \left \lceil{\frac{x}{2}}\right \rceil$.

Let's call $x = 10a + b$. We now have $2a  + \left \lceil{\frac{b}{5}}\right \rceil + 19 = 5a + \left  \lceil{\frac{b}{2}}\right \rceil$, or

$19 - 3a = \left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil$.

Obviously, since $b \le 10$, this will not work for any value under 6. In addition, since obviously $\frac{b}{2} \ge \frac{b}{5}$, this will not work for any value over six, so we have $a = 6$ and $\left \lceil{\frac{b}{2}}\right \rceil - \left \lceil{\frac{b}{5}}\right \rceil = 1.$

This can be achieved when $\left \lceil{\frac{b}{5}}\right \rceil = 1$ and $\left \lceil{\frac{b}{2}}\right \rceil = 2$, or when $\left \lceil{\frac{b}{5}}\right \rceil = 2$ and $\left \lceil{\frac{b}{2}}\right \rceil = 3$.

Case One:

We have $b \le 5$ and $3 \le b \le 4$, so $b = 3, 4$.

Case Two:

We have $6 \le b \le 9$ and $5 \le b \le 6$, so $b = 6$.

We then have $63 + 64 + 66 = 193$, which has a digit sum of $\boxed{13}$.

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png