2015 AMC 10B Problems/Problem 23

Revision as of 16:43, 18 March 2015 by Azmath333 (talk | contribs) (Solution)

Problem

Let $n$ be a positive integer greater than 4 such that the decimal representation of $n!$ ends in $k$ zeros and the decimal representation of $(2n)!$ ends in $3k$ zeros. Let $s$ denote the sum of the four least possible values of $n$. What is the sum of the digits of $s$?

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$

Solution

A trailing zero requires a factor of two and a factor of five. Since factors of two occur more often than factors of five, we can focus on the factors of five. We make a chart of how many trailing zeros factorials have:

\[\begin{array}{c|c|c|c|c|c|c} \mathrm{Factorial}&0!-4!&5!-9!&10!-14!&15!-19!&20!-24!&25!-29!\\\hline \mathrm{Zeros}&0&1&2&3&4&6 \end{array}\]

We first look at the case when $n!$ has $1$ zero and $(2n)!$ has $3$ zeros. If $n=5,6,7$, $(2k)!$ has only $2$ zeros. But for $n=8,9$, $(2k)!$ has $3$ zeros. Thus, $n=8$ and $n=9$ work.

Secondly, we look at the case when $n!$ has $2$ zeros and $(2n)!$ has $6$ zeros. If $n=10,11,12$, $(2n)!$ has only $4$ zeros. But for $n=13,14$, $(2n)!$ has $6$ zeros. Thus, the smallest four values of $n$ that work are $n=8,9,13,14$, which sum to $44$. The sum of the digits of $44$ is $\boxed{\mathbf{(B)\ }8}$

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png