Difference between revisions of "2015 AMC 12A Problems"

Line 44: Line 44:
  
 
==Problem 6==
 
==Problem 6==
 +
 +
Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be <math>2 : 1</math>?
  
 
<math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8</math>
 
<math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8</math>
Line 51: Line 53:
 
==Problem 7==
 
==Problem 7==
  
<math> \textbf{(A)}\  
+
Two right circular cylinders have the same volume. The radius of the second cylinder is <math>10\%</math> more than the radius of the first. What is the relationship between the heights of the two cylinders?
\qquad\textbf{(B)}\  
+
 
\qquad\textbf{(C)}\  
+
<math>\textbf{(A)}\ \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\ \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ less than the first.} \\ \textbf{(D)}}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}</math>
\qquad\textbf{(D)}}\  
 
\qquad\textbf{(E)}\ </math>
 
  
 
[[2015 AMC 12A Problems/Problem 7|Solution]]
 
[[2015 AMC 12A Problems/Problem 7|Solution]]
  
 
==Problem 8==
 
==Problem 8==
 +
 +
The ratio of the length to the width of a rectangle is <math>4</math> : <math>3</math>. If the rectangle has diagonal of length <math>d</math>, then the area may be expressed as <math>kd^2</math> for some constant <math>k</math>. What is <math>k</math>?
  
 
<math> \textbf{(A)}\ \frac27 \qquad\textbf{(B)}\ \frac37 \qquad\textbf{(C)}\ \frac{12}{25} \qquad\textbf{(D)}}\ \frac{16}{26} \qquad\textbf{(E)}\ \frac34</math>
 
<math> \textbf{(A)}\ \frac27 \qquad\textbf{(B)}\ \frac37 \qquad\textbf{(C)}\ \frac{12}{25} \qquad\textbf{(D)}}\ \frac{16}{26} \qquad\textbf{(E)}\ \frac34</math>
Line 66: Line 68:
  
 
==Problem 9==
 
==Problem 9==
 +
 +
A box contains 2 red marbles, 2 green marbles, and 2 yellow marbles. Carol takes 2 marbles from the box at random; then Claudia takes 2 of the remaining marbles at random; and then Cheryl takes the last 2 marbles. What is the probability that Cheryl gets 2 marbles of the same color?
  
 
<math> \textbf{(A)}\ \frac{1}{10} \qquad\textbf{(B)}\ \frac16 \qquad\textbf{(C)}\ \frac15 \qquad\textbf{(D)}}\ \frac13 \qquad\textbf{(E)}\ \frac12</math>
 
<math> \textbf{(A)}\ \frac{1}{10} \qquad\textbf{(B)}\ \frac16 \qquad\textbf{(C)}\ \frac15 \qquad\textbf{(D)}}\ \frac13 \qquad\textbf{(E)}\ \frac12</math>
Line 72: Line 76:
  
 
==Problem 10==
 
==Problem 10==
 +
 +
Integers <math>x</math> and <math>y</math> with <math>x>y>0</math> satisfy <math>x+y+xy=80</math>. What is <math>x</math>?
  
 
<math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}}\ 18 \qquad\textbf{(E)}\ 26</math>
 
<math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}}\ 18 \qquad\textbf{(E)}\ 26</math>
Line 78: Line 84:
  
 
==Problem 11==
 
==Problem 11==
 +
 +
On a sheet of paper, Isabella draws a circle of radius <math>2</math>, a circle of radius <math>3</math>, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly <math>k >= 0</math> lines. How many different values of <math>k</math> are possible?
  
 
<math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6</math>
 
<math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6</math>
Line 84: Line 92:
  
 
==Problem 12==
 
==Problem 12==
 +
 +
The parabolas <math>y=ax^2 - 2</math> and <math>y=4 - bx^2</math> intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area <math>12</math>. What is <math>a+b</math>?
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 1.5\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 2.5\qquad\textbf{(E)}\ 3</math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 1.5\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 2.5\qquad\textbf{(E)}\ 3</math>
Line 91: Line 101:
 
==Problem 13==
 
==Problem 13==
  
<math> \textbf{(A)}\  
+
A league with 12 teams holds a round-robin tournament, with each team playing every other team exactly once. Games either end with one team victorious or else end in a draw. A team scores 2 points for every game it wins and 1 point for every game it draws. Which of the following is NOT a true statement about the list of 12 scores?
\qquad\textbf{(B)}\  
+
 
\qquad\textbf{(C)}\  
+
<math> \textbf{(A)}\ \text{There must be an even number of odd scores.}\\
\qquad\textbf{(D)}}\  
+
\qquad\textbf{(B)}\ \text{There must be an even number of even scores.}\\
\qquad\textbf{(E)}\ </math>
+
\qquad\textbf{(C)}\ \text{There cannot be two scores of }0\text{.}\\
 +
\qquad\textbf{(D)}}\ \text{The sum of the scores must be at least }100\text{.}\\
 +
\qquad\textbf{(E)}\ \text{The highest score must be at least }12\text{.}</math>
  
 
[[2015 AMC 12A Problems/Problem 13|Solution]]
 
[[2015 AMC 12A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
 +
 +
What is the value of <math>a</math> for which <math>\frac{1}{\text{log}_2a} + \frac{1}{\text{log}_3a} + \frac{1}{\text{log}_4a} = 1</math>?
  
 
<math> \textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}}\ 24\qquad\textbf{(E)}\ 36</math>
 
<math> \textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}}\ 24\qquad\textbf{(E)}\ 36</math>
Line 106: Line 120:
  
 
==Problem 15==
 
==Problem 15==
 +
 +
What is the minimum number of digits to the right of the decimal point needed to express the fraction <math>\frac{123456789}{2^{26}\cdot 5^4}</math> as a decimal?
  
 
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 22\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}}\ 30\qquad\textbf{(E)}\ 104</math>
 
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 22\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}}\ 30\qquad\textbf{(E)}\ 104</math>
Line 112: Line 128:
  
 
==Problem 16==
 
==Problem 16==
 +
 +
Tetrahedron <math>ABCD</math> has <math>AB=5,AC=3,BC=4,BD=4,AD=3,</math> and <math>CD=\frac{12}{5}\sqrt{2}</math>. What is the volume of the tetrahedron?
  
 
<math> \textbf{(A)}\ 3\sqrt{2}\qquad\textbf{(B)}\ 2\sqrt{5}\qquad\textbf{(C)}\ \frac{24}{5}\qquad\textbf{(D)}}\ 3\sqrt{3}\qquad\textbf{(E)}\ \frac{24}{5}\sqrt{2}</math>
 
<math> \textbf{(A)}\ 3\sqrt{2}\qquad\textbf{(B)}\ 2\sqrt{5}\qquad\textbf{(C)}\ \frac{24}{5}\qquad\textbf{(D)}}\ 3\sqrt{3}\qquad\textbf{(E)}\ \frac{24}{5}\sqrt{2}</math>
Line 118: Line 136:
  
 
==Problem 17==
 
==Problem 17==
 +
 +
Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?
  
 
<math> \textbf{(A)}\ \frac{47}{256} \qquad\textbf{(B)}\ \frac{3}{16} \qquad\textbf{(C)}\ \frac{49}{256} \qquad\textbf{(D)}}\ \frac{25}{128} \qquad\textbf{(E)}\ \frac{51}{256}</math>
 
<math> \textbf{(A)}\ \frac{47}{256} \qquad\textbf{(B)}\ \frac{3}{16} \qquad\textbf{(C)}\ \frac{49}{256} \qquad\textbf{(D)}}\ \frac{25}{128} \qquad\textbf{(E)}\ \frac{51}{256}</math>
Line 124: Line 144:
  
 
==Problem 18==
 
==Problem 18==
 +
 +
The zeros of the function <math>f(x) = x^2-ax+2a</math> are integers. What is the sum of the possible values of <math>a</math>?
  
 
<math> \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}}\ 17 \qquad\textbf{(E)}\ 18</math>
 
<math> \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}}\ 17 \qquad\textbf{(E)}\ 18</math>
Line 130: Line 152:
  
 
==Problem 19==
 
==Problem 19==
 +
 +
For some positive integers <math>p</math>, there is a quadrilateral <math>ABCD</math> with positive integer side lengths, perimeter <math>p</math>, right angles at <math>B</math> and <math>C</math>, <math>AB=2</math>, and <math>CD=AD</math>. How many different values of <math>p<2015</math> are possible?
  
 
<math> \textbf{(A)}\ 30 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63</math>
 
<math> \textbf{(A)}\ 30 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63</math>
Line 136: Line 160:
  
 
==Problem 20==
 
==Problem 20==
 +
 +
Isosceles triangles <math>T</math> and <math>T'</math> are not congruent but have the same area and the same perimeter. The sides of <math>T</math> have lengths of <math>5,5,</math> and <math>8</math>, while those of <math>T'</math> have lengths of <math>a,a,</math> and <math>b</math>. Which of the following numbers is closest to <math>b</math>?
  
 
<math> \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8</math>
 
<math> \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8</math>
Line 142: Line 168:
  
 
==Problem 21==
 
==Problem 21==
 +
 +
A circle of radius <math>r</math> passes through both foci of, and exactly four points on, the ellipse with equation <math>x^2+16y^2=16</math>. The set of all possible values of <math>r</math> is an interval <math>[a,b)</math>. What is <math>a+b</math>?
  
 
<math> \textbf{(A)}\ 5\sqrt{2}+4 \qquad\textbf{(B)}\ \sqrt{17}+7 \qquad\textbf{(C)}\ 6\sqrt{2}+3 \qquad\textbf{(D)}}\ \sqrt{15}+8 \qquad\textbf{(E)}\ 12</math>
 
<math> \textbf{(A)}\ 5\sqrt{2}+4 \qquad\textbf{(B)}\ \sqrt{17}+7 \qquad\textbf{(C)}\ 6\sqrt{2}+3 \qquad\textbf{(D)}}\ \sqrt{15}+8 \qquad\textbf{(E)}\ 12</math>
Line 148: Line 176:
  
 
==Problem 22==
 
==Problem 22==
 +
 +
For each positive integer <math>n</math>, let <math>S(n)</math> be the number of sequences of length <math>n</math> consisting solely of the letters <math>A</math> and <math>B</math>, with no more than three <math>A</math>s in a row and no more than three <math>B</math>s in a row. What is the remainder when <math>S(2015)</math> is divided by 12?
  
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}}\ 8 \qquad\textbf{(E)}\ 10</math>
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}}\ 8 \qquad\textbf{(E)}\ 10</math>
Line 154: Line 184:
  
 
==Problem 23==
 
==Problem 23==
 +
 +
Let <math>S</math> be a square of side length 1. Two points are chosen independently at random on the sides of <math>S</math>. The probability that the straight-line distance between the points is at least <math>\frac12</math> is <math>\frac{a-b\pi}{c}</math>, where <math>a,b,</math> and <math>c</math> are positive integers and <math>\text{gcd}(a,b,c) = 1</math>. What is <math>a+b+c</math>?
  
 
<math> \textbf{(A)}\ 59 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63</math>
 
<math> \textbf{(A)}\ 59 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63</math>
Line 160: Line 192:
  
 
==Problem 24==
 
==Problem 24==
 +
 +
Rational numbers <math>a</math> and <math>b</math> are chosen at random among all rational numbers in the interval <math>[0,2)</math> that can be written as fractions <math>\frac{n}{d}</math> where <math>n</math> and <math>d</math> are integers with <math>1 <= d <= 5</math>. What is the probability that
 +
<cmath>(\text{cos}(a\pi)+i\text{sin}(b\pi))^4</cmath>
 +
is a real number?
  
 
<math> \textbf{(A)}\ \frac{3}{5} \qquad\textbf{(B)}\ \frac{4}{25} \qquad\textbf{(C)}\ \frac{41}{200} \qquad\textbf{(D)}}\ \frac{6}{25} \qquad\textbf{(E)}\ \frac{13}{50}</math>
 
<math> \textbf{(A)}\ \frac{3}{5} \qquad\textbf{(B)}\ \frac{4}{25} \qquad\textbf{(C)}\ \frac{41}{200} \qquad\textbf{(D)}}\ \frac{6}{25} \qquad\textbf{(E)}\ \frac{13}{50}</math>
Line 166: Line 202:
  
 
==Problem 25==
 
==Problem 25==
 +
 +
A collection of circles in the upper half-plane, all tangent to the <math>x</math>-axis, is constructed in layers as follows. Layer <math>L_0</math> consists of two circles of radii <math>70^2</math> and <math>73^2</math> that are externally tangent. For <math>k>=1</math>, the circles in <math>\bigcup_{j=0}^{k-1}L_j</math> are ordered according to their points of tangency with the <math>x</math>-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer <math>L_k</math> consists of the <math>2^{k-1}</math> circles constructed in this way. Let <math>S=\bigcup_{j=0}^{6}L_j</math>, and for every circle <math>C</math> denote by <math>r(C)</math> its radius. What is
 +
<cmath>\sum_{C\in S} \frac{1}{\sqrt{r(C)}}?</cmath>
 +
 +
DIAGRAM NEEDED
  
 
<math> \textbf{(A)}\ \frac{286}{35} \qquad\textbf{(B)}\ \frac{583}{70} \qquad\textbf{(C)}\ \frac{715}{73} \qquad\textbf{(D)}}\ \frac{143}{14} \qquad\textbf{(E)}\ \frac{1573}{146}</math>
 
<math> \textbf{(A)}\ \frac{286}{35} \qquad\textbf{(B)}\ \frac{583}{70} \qquad\textbf{(C)}\ \frac{715}{73} \qquad\textbf{(D)}}\ \frac{143}{14} \qquad\textbf{(E)}\ \frac{1573}{146}</math>

Revision as of 20:31, 4 February 2015

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 2

Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle?

$\textbf{(A)}\ 52\qquad\textbf{(B)}\ 57\qquad\textbf{(C)}\ 62\qquad\textbf{(D)}\ 67\qquad\textbf{(E)}\ 72$

Solution

Problem 3

Mr. Patrick teaches math to 15 students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was 80. after he graded Payton's test, the class average became 81. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95$

Solution

Problem 4

The sum of two positive numbers is 5 times their difference. What is the ratio of the larger number to the smaller?

$\textbf{(A)}\ \frac54 \qquad\textbf{(B)}\ \frac32 \qquad\textbf{(C)}\ \frac95 \qquad\textbf{(D)}}\ 2 \qquad\textbf{(E)}\ \frac52$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 5

Amelia needs to estimate the quantity $\frac{a}{b} - c$, where $a, b,$ and $c$ are large positive integers. She rounds each of the integers so that the calculation will be easier to do mentally. In which of these situations will her answer necessarily be greater than the exact value of $\frac{a}{b} - c$?

$\textbf{(A)}\ \text{She rounds all three numbers up.}\\ \qquad\textbf{(B)}\ \text{She rounds } a \text{ and } b \text{ up, and she rounds } c \text{down.}\\ \qquad\textbf{(C)}\ \text{She rounds } a \text{ and } c \text{ up, and she rounds } b \text{down.} \\ \qquad\textbf{(D)}}\ \text{She rounds } a \text{ up, and she rounds } b \text{ and } c \text{down.}\\ \qquad\textbf{(E)}\ \text{She rounds } c \text{ up, and she rounds } a \text{ and } b \text{down.}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 6

Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2 : 1$?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 7

Two right circular cylinders have the same volume. The radius of the second cylinder is $10\%$ more than the radius of the first. What is the relationship between the heights of the two cylinders?

$\textbf{(A)}\ \text{The second height is } 10\% \text{ less than the first.} \\ \textbf{(B)}\ \text{The first height is } 10\% \text{ more than the second.}\\ \textbf{(C)}\ \text{The second height is } 21\% \text{ less than the first.} \\ \textbf{(D)}}\ \text{The first height is } 21\% \text{ more than the second.}\\ \textbf{(E)}\ \text{The second height is } 80\% \text{ of the first.}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 8

The ratio of the length to the width of a rectangle is $4$ : $3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?

$\textbf{(A)}\ \frac27 \qquad\textbf{(B)}\ \frac37 \qquad\textbf{(C)}\ \frac{12}{25} \qquad\textbf{(D)}}\ \frac{16}{26} \qquad\textbf{(E)}\ \frac34$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 9

A box contains 2 red marbles, 2 green marbles, and 2 yellow marbles. Carol takes 2 marbles from the box at random; then Claudia takes 2 of the remaining marbles at random; and then Cheryl takes the last 2 marbles. What is the probability that Cheryl gets 2 marbles of the same color?

$\textbf{(A)}\ \frac{1}{10} \qquad\textbf{(B)}\ \frac16 \qquad\textbf{(C)}\ \frac15 \qquad\textbf{(D)}}\ \frac13 \qquad\textbf{(E)}\ \frac12$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 10

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$?

$\textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}}\ 18 \qquad\textbf{(E)}\ 26$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 11

On a sheet of paper, Isabella draws a circle of radius $2$, a circle of radius $3$, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly $k >= 0$ lines. How many different values of $k$ are possible?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 12

The parabolas $y=ax^2 - 2$ and $y=4 - bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 1.5\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 2.5\qquad\textbf{(E)}\ 3$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 13

A league with 12 teams holds a round-robin tournament, with each team playing every other team exactly once. Games either end with one team victorious or else end in a draw. A team scores 2 points for every game it wins and 1 point for every game it draws. Which of the following is NOT a true statement about the list of 12 scores?

$\textbf{(A)}\ \text{There must be an even number of odd scores.}\\ \qquad\textbf{(B)}\ \text{There must be an even number of even scores.}\\ \qquad\textbf{(C)}\ \text{There cannot be two scores of }0\text{.}\\ \qquad\textbf{(D)}}\ \text{The sum of the scores must be at least }100\text{.}\\ \qquad\textbf{(E)}\ \text{The highest score must be at least }12\text{.}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 14

What is the value of $a$ for which $\frac{1}{\text{log}_2a} + \frac{1}{\text{log}_3a} + \frac{1}{\text{log}_4a} = 1$?

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}}\ 24\qquad\textbf{(E)}\ 36$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 15

What is the minimum number of digits to the right of the decimal point needed to express the fraction $\frac{123456789}{2^{26}\cdot 5^4}$ as a decimal?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 22\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}}\ 30\qquad\textbf{(E)}\ 104$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 16

Tetrahedron $ABCD$ has $AB=5,AC=3,BC=4,BD=4,AD=3,$ and $CD=\frac{12}{5}\sqrt{2}$. What is the volume of the tetrahedron?

$\textbf{(A)}\ 3\sqrt{2}\qquad\textbf{(B)}\ 2\sqrt{5}\qquad\textbf{(C)}\ \frac{24}{5}\qquad\textbf{(D)}}\ 3\sqrt{3}\qquad\textbf{(E)}\ \frac{24}{5}\sqrt{2}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 17

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?

$\textbf{(A)}\ \frac{47}{256} \qquad\textbf{(B)}\ \frac{3}{16} \qquad\textbf{(C)}\ \frac{49}{256} \qquad\textbf{(D)}}\ \frac{25}{128} \qquad\textbf{(E)}\ \frac{51}{256}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 18

The zeros of the function $f(x) = x^2-ax+2a$ are integers. What is the sum of the possible values of $a$?

$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}}\ 17 \qquad\textbf{(E)}\ 18$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 19

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

$\textbf{(A)}\ 30 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 20

Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths of $5,5,$ and $8$, while those of $T'$ have lengths of $a,a,$ and $b$. Which of the following numbers is closest to $b$?

$\textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}}\ 6 \qquad\textbf{(E)}\ 8$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 21

A circle of radius $r$ passes through both foci of, and exactly four points on, the ellipse with equation $x^2+16y^2=16$. The set of all possible values of $r$ is an interval $[a,b)$. What is $a+b$?

$\textbf{(A)}\ 5\sqrt{2}+4 \qquad\textbf{(B)}\ \sqrt{17}+7 \qquad\textbf{(C)}\ 6\sqrt{2}+3 \qquad\textbf{(D)}}\ \sqrt{15}+8 \qquad\textbf{(E)}\ 12$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 22

For each positive integer $n$, let $S(n)$ be the number of sequences of length $n$ consisting solely of the letters $A$ and $B$, with no more than three $A$s in a row and no more than three $B$s in a row. What is the remainder when $S(2015)$ is divided by 12?

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}}\ 8 \qquad\textbf{(E)}\ 10$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 23

Let $S$ be a square of side length 1. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\frac12$ is $\frac{a-b\pi}{c}$, where $a,b,$ and $c$ are positive integers and $\text{gcd}(a,b,c) = 1$. What is $a+b+c$?

$\textbf{(A)}\ 59 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 61 \qquad\textbf{(D)}}\ 62 \qquad\textbf{(E)}\ 63$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 24

Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\frac{n}{d}$ where $n$ and $d$ are integers with $1 <= d <= 5$. What is the probability that \[(\text{cos}(a\pi)+i\text{sin}(b\pi))^4\] is a real number?

$\textbf{(A)}\ \frac{3}{5} \qquad\textbf{(B)}\ \frac{4}{25} \qquad\textbf{(C)}\ \frac{41}{200} \qquad\textbf{(D)}}\ \frac{6}{25} \qquad\textbf{(E)}\ \frac{13}{50}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 25

A collection of circles in the upper half-plane, all tangent to the $x$-axis, is constructed in layers as follows. Layer $L_0$ consists of two circles of radii $70^2$ and $73^2$ that are externally tangent. For $k>=1$, the circles in $\bigcup_{j=0}^{k-1}L_j$ are ordered according to their points of tangency with the $x$-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer $L_k$ consists of the $2^{k-1}$ circles constructed in this way. Let $S=\bigcup_{j=0}^{6}L_j$, and for every circle $C$ denote by $r(C)$ its radius. What is \[\sum_{C\in S} \frac{1}{\sqrt{r(C)}}?\]

DIAGRAM NEEDED

$\textbf{(A)}\ \frac{286}{35} \qquad\textbf{(B)}\ \frac{583}{70} \qquad\textbf{(C)}\ \frac{715}{73} \qquad\textbf{(D)}}\ \frac{143}{14} \qquad\textbf{(E)}\ \frac{1573}{146}$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS