# Difference between revisions of "2015 AMC 12A Problems"

## Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$

## Problem 2

Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle?

$\textbf{(A)}\ 52\qquad\textbf{(B)}\ 57\qquad\textbf{(C)}\ 62\qquad\textbf{(D)}\ 67\qquad\textbf{(E)}\ 72$

## Problem 3

Mr. Patrick teaches math to 15 students. He was grading tests and found that when he graded everyone's test except Payton's, the average grade for the class was 80. after he graded Payton's test, the class average became 81. What was Payton's score on the test?

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 85\qquad\textbf{(C)}\ 91\qquad\textbf{(D)}\ 94\qquad\textbf{(E)}\ 95$

## Problem 4

The sum of two positive numbers is 5 times their difference. What is the ratio of the larger number to the smaller?

$\textbf{(A)}\ \frac54 \qquad\textbf{(B)}\ \frac32 \qquad\textbf{(C)}\ \frac95 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \frac52$

## Problem 5

Amelia needs to estimate the quantity $\frac{a}{b} - c$, where $a, b,$ and $c$ are large positive integers. She rounds each of the integers so that the calculation will be easier to do mentally. In which of these situations will her answer necessarily be greater than the exact value of $\frac{a}{b} - c$?

$\textbf{(A)}\ \text{She rounds all three numbers up.}\\ \qquad\textbf{(B)}\ \text{She rounds } a \text{ and } b \text{ up, and she rounds } c \text{ down.}\\ \qquad\textbf{(C)}\ \text{She rounds } a \text{ and } c \text{ up, and she rounds } b \text{ down.} \\ \qquad\textbf{(D)}\ \text{She rounds } a \text{ up, and she rounds } b \text{ and } c \text{ down.}\\ \qquad\textbf{(E)}\ \text{She rounds } c \text{ up, and she rounds } a \text{ and } b \text{ down.}$

## Problem 6

Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2 : 1$?

## Problem 8

The ratio of the length to the width of a rectangle is $4$ : $3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?

## Problem 10

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$?

## Problem 12

The parabolas $y=ax^2 - 2$ and $y=4 - bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$?

## Problem 14

What is the value of $a$ for which $\frac{1}{\text{log}_2a} + \frac{1}{\text{log}_3a} + \frac{1}{\text{log}_4a} = 1$?

## Problem 15

What is the minimum number of digits to the right of the decimal point needed to express the fraction $\frac{123456789}{2^{26}\cdot 5^4}$ as a decimal?

## Problem 17

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?

## Problem 19

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

## Problem 21

A circle of radius $r$ passes through both foci of, and exactly four points on, the ellipse with equation $x^2+16y^2=16$. The set of all possible values of $r$ is an interval $[a,b)$. What is $a+b$?

## Problem 23

Let $S$ be a square of side length 1. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\frac12$ is $\frac{a-b\pi}{c}$, where $a,b,$ and $c$ are positive integers and $\text{gcd}(a,b,c) = 1$. What is $a+b+c$?

## Problem 25

A collection of circles in the upper half-plane, all tangent to the $x$-axis, is constructed in layers as follows. Layer $L_0$ consists of two circles of radii $70^2$ and $73^2$ that are externally tangent. For $k\ge1$, the circles in $\bigcup_{j=0}^{k-1}L_j$ are ordered according to their points of tangency with the $x$-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer $L_k$ consists of the $2^{k-1}$ circles constructed in this way. Let $S=\bigcup_{j=0}^{6}L_j$, and for every circle $C$ denote by $r(C)$ its radius. What is $$\sum_{C\in S} \frac{1}{\sqrt{r(C)}}?$$

$[asy] import olympiad; size(350); defaultpen(linewidth(0.7)); // define a bunch of arrays and starting points pair[] coord = new pair[65]; int[] trav = {32,16,8,4,2,1}; coord[0] = (0,73^2); coord[64] = (2*73*70,70^2); // draw the big circles and the bottom line path arc1 = arc(coord[0],coord[0].y,260,360); path arc2 = arc(coord[64],coord[64].y,175,280); fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.75)); fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.75)); draw(arc1^^arc2); draw((-930,0)--(70^2+73^2+850,0)); // We now apply the findCenter function 63 times to get // the location of the centers of all 63 constructed circles. // The complicated array setup ensures that all the circles // will be taken in the right order for(int i = 0;i<=5;i=i+1) { int skip = trav[i]; for(int k=skip;k<=64 - skip; k = k + 2*skip) { pair cent1 = coord[k-skip], cent2 = coord[k+skip]; real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2); real shiftx = cent1.x + sqrt(4*r1*rn); coord[k] = (shiftx,rn); } // Draw the remaining 63 circles } for(int i=1;i<=63;i=i+1) { filldraw(circle(coord[i],coord[i].y),gray(0.75)); }[/asy]$

$\textbf{(A)}\ \frac{286}{35} \qquad\textbf{(B)}\ \frac{583}{70} \qquad\textbf{(C)}\ \frac{715}{73} \qquad\textbf{(D)}}\ \frac{143}{14} \qquad\textbf{(E)}\ \frac{1573}{146}$