# 2015 AMC 12A Problems

## Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

## Problem 5

Amelia needs to estimate the quantity $\frac{a}{b} - c$, where $a, b,$ and $c$ are large positive integers. She rounds each of the integers so that the calculation will be easier to do mentally. In which of these situations will her answer necessarily be greater than the exact value of $\frac{a}{b} - c$?

## Problem 7

Two right circular cylinders have the same volume. The radius of the second cylinder is $10\%$ more than the radius of the first. What is the relationship between the heights of the two cylinders?

## Problem 9

A box contains 2 red marbles, 2 green marbles, and 2 yellow marbles. Carol takes 2 marbles from the box at random; then Claudia takes 2 of the remaining marbles at random; and then Cheryl takes the last 2 marbles. What is the probability that Cheryl gets 2 marbles of the same color?

## Problem 11

On a sheet of paper, Isabella draws a circle of radius $2$, a circle of radius $3$, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly $k \ge 0$ lines. How many different values of $k$ are possible?

## Problem 13

A league with 12 teams holds a round-robin tournament, with each team playing every other team exactly once. Games either end with one team victorious or else end in a draw. A team scores 2 points for every game it wins and 1 point for every game it draws. Which of the following is NOT a true statement about the list of 12 scores?

## Problem 16

Tetrahedron $ABCD$ has $AB=5,AC=3,BC=4,BD=4,AD=3,$ and $CD=\frac{12}{5}\sqrt{2}$. What is the volume of the tetrahedron?

## Problem 18

The zeros of the function $f(x) = x^2-ax+2a$ are integers. What is the sum of the possible values of $a$?

## Problem 20

Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths of $5,5,$ and $8$, while those of $T'$ have lengths of $a,a,$ and $b$. Which of the following numbers is closest to $b$?

## Problem 22

For each positive integer $n$, let $S(n)$ be the number of sequences of length $n$ consisting solely of the letters $A$ and $B$, with no more than three $A$s in a row and no more than three $B$s in a row. What is the remainder when $S(2015)$ is divided by 12?

## Problem 24

Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\frac{n}{d}$ where $n$ and $d$ are integers with $1 \le d \le 5$. What is the probability that $$(\text{cos}(a\pi)+i\text{sin}(b\pi))^4$$ is a real number?