ONLINE AMC 8 CLASSES
Join outstanding students around the world getting started with their AMC 8 preparation in our MATHCOUNTS/AMC 8 Basics online course, and then level up to our MATHCOUNTS/AMC 8 Advanced online course.

# Difference between revisions of "2015 AMC 8 Problems"

## Problem 1

How many square yards of carpet are required to cover a rectangular floor that is $12$ feet long and $9$ feet wide? (There are $3$ feet in a yard.)

$\textbf{(A) }12\qquad\textbf{(B) }36\qquad\textbf{(C) }108\qquad\textbf{(D) }324\qquad \textbf{(E) }972$

## Problem 2

Point $O$ is the center of the regular octagon $ABCDEFGH$, and $X$ is the midpoint of the side $\overline{AB}.$ What fraction of the area of the octagon is shaded?

$[asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B); fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle); dot("A",A,dir(45)); dot("B",B,dir(90)); dot("C",C,dir(135)); dot("D",D,dir(180)); dot("E",E,dir(-135)); dot("F",F,dir(-90)); dot("G",G,dir(-45)); dot("H",H,dir(0)); dot("X",X,dir(135/2)); dot("O",O,dir(0)); draw(E--O--X); [/asy]$

$\textbf{(A) }\frac{11}{32} \quad\textbf{(B) }\frac{3}{8} \quad\textbf{(C) }\frac{13}{32} \quad\textbf{(D) }\frac{7}{16}\quad \textbf{(E) }\frac{15}{32}$

## Problem 3

Jack and Jill are going swimming at a pool that is one mile from their house. They leave home simultaneously. Jill rides her bicycle to the pool at a constant speed of $10$ miles per hour. Jack walks to the pool at a constant speed of $4$ miles per hour. How many minutes before Jack does Jill arrive?

$\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad \textbf{(E) }10$

## Problem 4

The Centerville Middle School chess team consists of two boys and three girls. A photographer wants to take a picture of the team to appear in the local newspaper. She decides to have them sit in a row with a boy at each end and the three girls in the middle. How many such arrangements are possible?

$\textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }12$

## Problem 5

Billy's basketball team scored the following points over the course of the first $11$ games of the season: $$42, 47, 53, 53, 58, 58, 58, 61, 64, 65, 73$$ If his team scores 40 in the 12th game, which of the following statistics will show an increase?

$\textbf{(A) } \text{range} \qquad \textbf{(B) } \text{median} \qquad \textbf{(C) } \text{mean} \qquad \textbf{(D) } \text{mode} \qquad \textbf{(E) } \text{mid-range}$

## Problem 6

In $\bigtriangleup ABC$, $AB=BC=29$, and $AC=42$. What is the area of $\bigtriangleup ABC$?

$\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701$

## Problem 7

Each of two boxes contains three chips numbered $1$, $2$, $3$. A chip is drawn randomly from each box and the numbers on the two chips are multiplied. What is the probability that their product is even?

$\textbf{(A) }\frac{1}{9}\qquad\textbf{(B) }\frac{2}{9}\qquad\textbf{(C) }\frac{4}{9}\qquad\textbf{(D) }\frac{1}{2}\qquad \textbf{(E) }\frac{5}{9}$

## Problem 8

What is the smallest whole number larger than the perimeter of any triangle with a side of length $5$ and a side of length $19$?

$\textbf{(A) }24\qquad\textbf{(B) }29\qquad\textbf{(C) }43\qquad\textbf{(D) }48\qquad \textbf{(E) }57$

## Problem 10

How many integers between $1000$ and $9999$ have four distinct digits?

$\textbf{(A) }3024\qquad\textbf{(B) }4536\qquad\textbf{(C) }5040\qquad\textbf{(D) }6480\qquad \textbf{(E) }6561$

## Problem 11

In the small country of Mathland, all automobile license plates have four symbols. The first must be a vowel ($A, E, I, O,$ or $U$), the second and third must be two different letters among the $21$ non-vowels, and the fourth must be a digit ($0$ through $9$). If the symbols are chosen at random subject to these conditions, what is the probability that the plate will read "$AMC8$"?

$\textbf{(A) } \frac{1}{22,050} \qquad \textbf{(B) } \frac{1}{21,000}\qquad \textbf{(C) } \frac{1}{10,500}\qquad \textbf{(D) } \frac{1}{2,100} \qquad \textbf{(E) } \frac{1}{1,050}$

## Problem 12

How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have?

$[asy] import three; currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */ draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle); draw((0,0,0)--(0,0,1)); draw((0,1,0)--(0,1,1)); draw((1,1,0)--(1,1,1)); draw((1,0,0)--(1,0,1)); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle); label("D",(0,0,0),S); label("A",(0,0,1),N); label("H",(0,1,0),S); label("E",(0,1,1),N); label("C",(1,0,0),S); label("B",(1,0,1),N); label("G",(1,1,0),S); label("F",(1,1,1),N); [/asy]$


$\textbf{(A) }6 \quad\textbf{(B) }12 \quad\textbf{(C) } 18 \quad\textbf{(D) } 24 \quad \textbf{(E) } 36$

## Problem 13

How many subsets of two elements can be removed from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ so that the mean (average) of the remaining numbers is $6$?

$\textbf{(A)}\text{ 1}\qquad\textbf{(B)}\text{ 2}\qquad\textbf{(C)}\text{ 3}\qquad\textbf{(D)}\text{ 5}\qquad\textbf{(E)}\text{ 6}$

## Problem 14

Which of the following integers cannot be written as the sum of four consecutive odd integers?

$\textbf{(A)}\text{ 16}\qquad\textbf{(B)}\text{ 40}\qquad\textbf{(C)}\text{ 72}\qquad\textbf{(D)}\text{ 100}\qquad\textbf{(E)}\text{ 200}$

## Problem 15

At Euler Middle School, $198$ students voted on two issues in a school referendum with the following results: $149$ voted in favor of the first issue and $119$ voted in favor of the second issue. If there were exactly $29$ students who voted against both issues, how many students voted in favor of both issues?

$\textbf{(A) }49\qquad\textbf{(B) }70\qquad\textbf{(C) }79\qquad\textbf{(D) }99\qquad \textbf{(E) }149$

## Problem 16

In a middle-school mentoring program, a number of the sixth graders are paired with a ninth-grade student as a buddy. No ninth grader is assigned more than one sixth-grade buddy. If $\tfrac{1}{3}$ of all the ninth graders are paired with $\tfrac{2}{5}$ of all the sixth graders, what fraction of the total number of sixth and ninth graders have a buddy?

$\textbf{(A) } \frac{2}{15} \qquad \textbf{(B) } \frac{4}{11} \qquad \textbf{(C) } \frac{11}{30} \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{11}{15}$

## Problem 17

Jeremy's father drives him to school in rush hour traffic in $20$ minutes. One day there is no traffic, so his father can drive him $18$ miles per hour faster and gets him to school in $12$ minutes. How far in miles is it to school?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12$

## Problem 18

An arithmetic sequence is a sequence in which each term after the first is obtained by adding a constant to the previous term. For example, $2,5,8,11,14$ is an arithmetic sequence with five terms, in which the first term is $2$ and the constant added is $3$. Each row and each column in this $5\times5$ array is an arithmetic sequence with five terms. What is the value of $X$?

$[asy] size(3.85cm); label("X",(2.5,2.1),N); for (int i=0; i<=5; ++i) draw((i,0)--(i,5), linewidth(.5)); for (int j=0; j<=5; ++j) draw((0,j)--(5,j), linewidth(.5)); void draw_num(pair ll_corner, int num) { label(string(num), ll_corner + (0.5, 0.5), p = fontsize(19pt)); } draw_num((0,0), 17); draw_num((4, 0), 81); draw_num((0, 4), 1); draw_num((4,4), 25); void foo(int x, int y, string n) { label(n, (x+0.5,y+0.5), p = fontsize(19pt)); } foo(2, 4, " "); foo(3, 4, " "); foo(0, 3, " "); foo(2, 3, " "); foo(1, 2, " "); foo(3, 2, " "); foo(1, 1, " "); foo(2, 1, " "); foo(3, 1, " "); foo(4, 1, " "); foo(2, 0, " "); foo(3, 0, " "); foo(0, 1, " "); foo(0, 2, " "); foo(1, 0, " "); foo(1, 3, " "); foo(1, 4, " "); foo(3, 3, " "); foo(4, 2, " "); foo(4, 3, " "); [/asy]$

$\textbf{(A) }21\qquad\textbf{(B) }31\qquad\textbf{(C) }36\qquad\textbf{(D) }40\qquad \textbf{(E) }42$

## Problem 19

A triangle with vertices as $A=(1,3)$, $B=(5,1)$, and $C=(4,4)$ is plotted on a $6\times5$ grid. What fraction of the grid is covered by the triangle?

$[asy] draw((1,0)--(1,5),linewidth(.5)); draw((2,0)--(2,5),linewidth(.5)); draw((3,0)--(3,5),linewidth(.5)); draw((4,0)--(4,5),linewidth(.5)); draw((5,0)--(5,5),linewidth(.5)); draw((6,0)--(6,5),linewidth(.5)); draw((0,1)--(6,1),linewidth(.5)); draw((0,2)--(6,2),linewidth(.5)); draw((0,3)--(6,3),linewidth(.5)); draw((0,4)--(6,4),linewidth(.5)); draw((0,5)--(6,5),linewidth(.5)); draw((0,0)--(0,6),EndArrow); draw((0,0)--(7,0),EndArrow); draw((1,3)--(4,4)--(5,1)--cycle); label("y",(0,6),W); label("x",(7,0),S); label("A",(1,3),dir(210)); label("B",(5,1),SE); label("C",(4,4),dir(100)); [/asy]$

$\textbf{(A) }\frac{1}{6} \qquad \textbf{(B) }\frac{1}{5} \qquad \textbf{(C) }\frac{1}{4} \qquad \textbf{(D) }\frac{1}{3} \qquad \textbf{(E) }\frac{1}{2}$

## Problem 20

Ralph went to the store and bought $12$ pairs of socks for a total of $24$. Some of the socks he bought cost $1$ a pair, some of the socks he bought cost $3$ a pair, and some of the socks he bought cost $4$ a pair. If he bought at least one pair of each type, how many pairs of $1$ socks did Ralph buy?

$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$

## Problem 21

In the given figure hexagon $ABCDEF$ is equiangular, $ABJI$ and $FEHG$ are squares with areas $18$ and $32$ respectively, $\triangle JBK$ is equilateral and $FE=BC$. What is the area of $\triangle KBC$?

$[asy] draw((-4,6*sqrt(2))--(4,6*sqrt(2))); draw((-4,-6*sqrt(2))--(4,-6*sqrt(2))); draw((-8,0)--(-4,6*sqrt(2))); draw((-8,0)--(-4,-6*sqrt(2))); draw((4,6*sqrt(2))--(8,0)); draw((8,0)--(4,-6*sqrt(2))); draw((-4,6*sqrt(2))--(4,6*sqrt(2))--(4,8+6*sqrt(2))--(-4,8+6*sqrt(2))--cycle); draw((-8,0)--(-4,-6*sqrt(2))--(-4-6*sqrt(2),-4-6*sqrt(2))--(-8-6*sqrt(2),-4)--cycle); label("I",(-4,8+6*sqrt(2)),dir(100)); label("J",(4,8+6*sqrt(2)),dir(80)); label("A",(-4,6*sqrt(2)),dir(280)); label("B",(4,6*sqrt(2)),dir(250)); label("C",(8,0),W); label("D",(4,-6*sqrt(2)),NW); label("E",(-4,-6*sqrt(2)),NE); label("F",(-8,0),E); draw((4,8+6*sqrt(2))--(4,6*sqrt(2))--(4+4*sqrt(3),4+6*sqrt(2))--cycle); label("K",(4+4*sqrt(3),4+6*sqrt(2)),E); draw((4+4*sqrt(3),4+6*sqrt(2))--(8,0),dashed); label("H",(-4-6*sqrt(2),-4-6*sqrt(2)),S); label("G",(-8-6*sqrt(2),-4),W); label("32",(-10,-8),N); label("18",(0,6*sqrt(2)+2),N); [/asy]$

$\textbf{(A) }6\sqrt{2}\qquad\textbf{(B) }9\qquad\textbf{(C) }12\qquad\textbf{(D) }9\sqrt{2}\qquad\textbf{(E) }32$

## Problem 22

On June $1$, a group of students is standing in rows, with $15$ students in each row. On June $2$, the same group is standing with all of the students in one long row. On June $3$, the same group is standing with just one student in each row. On June $4$, the same group is standing with $6$ students in each row. This process continues through June $12$ with a different number of students per row each day. However, on June $13$, they cannot find a new way of organizing the students. What is the smallest possible number of students in the group?

$\textbf{(A) } 21 \qquad \textbf{(B) } 30 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 1080$

## Problem 23

Tom has twelve slips of paper which he wants to put into five cups labeled $A$, $B$, $C$, $D$, $E$. He wants the sum of the numbers on the slips in each cup to be an integer. Furthermore, he wants the five integers to be consecutive and increasing from $A$ to $E$. The numbers on the papers are $2, 2, 2, 2.5, 2.5, 3, 3, 3, 3, 3.5, 4,$ and $4.5$. If a slip with $2$ goes into cup $E$ and a slip with $3$ goes into cup $B$, then the slip with $3.5$ must go into what cup?

$\textbf{(A) } A \qquad \textbf{(B) } B \qquad \textbf{(C) } C \qquad \textbf{(D) } D \qquad \textbf{(E) } E$

## Problem 24

A baseball league consists of two four-team divisions. Each team plays every other team in its division $N$ games. Each team plays every team in the other division $M$ games with $N>2M$ and $M>4$. Each team plays a $76$-game schedule. How many games does a team play within its own division?

$\textbf{(A) } 36 \qquad \textbf{(B) } 48 \qquad \textbf{(C) } 54 \qquad \textbf{(D) } 60 \qquad \textbf{(E) } 72$

## Problem 25

One-inch squares are cut from the corners of this $5$ inch square. What is the area in square inches of the largest square that can be fitted into the remaining space?

$[asy] draw((0,0)--(0,5)--(5,5)--(5,0)--cycle); filldraw((0,4)--(1,4)--(1,5)--(0,5)--cycle, gray); filldraw((0,0)--(1,0)--(1,1)--(0,1)--cycle, gray); filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle, gray); filldraw((4,4)--(4,5)--(5,5)--(5,4)--cycle, gray); [/asy]$

$\textbf{(A) } 9\qquad \textbf{(B) } 12\frac{1}{2}\qquad \textbf{(C) } 15\qquad \textbf{(D) } 15\frac{1}{2}\qquad \textbf{(E) } 17$