Difference between revisions of "2015 AMC 8 Problems/Problem 8"

(Created page with "What is the smallest whole number larger than the perimeter of any triangle with a side of length <math> 5</math> and a side of length <math>19</math>? <math>\textbf{(A) }24\...")
 
Line 2: Line 2:
  
 
<math>\textbf{(A) }24\qquad\textbf{(B) }29\qquad\textbf{(C) }43\qquad\textbf{(D) }48\qquad \textbf{(E) }57</math>
 
<math>\textbf{(A) }24\qquad\textbf{(B) }29\qquad\textbf{(C) }43\qquad\textbf{(D) }48\qquad \textbf{(E) }57</math>
 +
The area of <math>\triangle ABC</math> is equal to half the product of its base and height.  By the Pythagorean Theorem, we find its height is <math>\sqrt{1^2+2^2}=\sqrt{5}</math>, and its base is <math>\sqrt{2^2+4^2}=\sqrt{20}</math>.  We multiply these and divide by 2 to find the of the triangle is <math>\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5</math>.  Since the grid has an area of <math>30</math>, the fraction of the grid covered by the triangle is <math>\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}</math>.
 +
 +
==See Also==
 +
 +
{{AMC8 box|year=2015|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Revision as of 17:24, 25 November 2015

What is the smallest whole number larger than the perimeter of any triangle with a side of length $5$ and a side of length $19$?

$\textbf{(A) }24\qquad\textbf{(B) }29\qquad\textbf{(C) }43\qquad\textbf{(D) }48\qquad \textbf{(E) }57$ The area of $\triangle ABC$ is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is $\sqrt{1^2+2^2}=\sqrt{5}$, and its base is $\sqrt{2^2+4^2}=\sqrt{20}$. We multiply these and divide by 2 to find the of the triangle is $\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5$. Since the grid has an area of $30$, the fraction of the grid covered by the triangle is $\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}$.

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS