Difference between revisions of "2015 USAJMO Problems/Problem 5"

(Solution 2)
m (Solution 2: Eliminated redundancy. I'm too repetitive, don't mind me.)
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
Let <math>ABCD</math> be a cyclic quadrilateral. Prove that there exists a point <math>X</math> on segment <math>\overline{BD}</math> such that <math>\angle BAC=\angle XAD</math> and <math>\angle BCA=\angle XCD</math> if and only if there exists a point <math>Y</math> on segment <math>\overline{AC}</math> such that <math>\angle CBD=\angle YBA</math> and <math>\angle CDB=\angle YDA</math>.
 
Let <math>ABCD</math> be a cyclic quadrilateral. Prove that there exists a point <math>X</math> on segment <math>\overline{BD}</math> such that <math>\angle BAC=\angle XAD</math> and <math>\angle BCA=\angle XCD</math> if and only if there exists a point <math>Y</math> on segment <math>\overline{AC}</math> such that <math>\angle CBD=\angle YBA</math> and <math>\angle CDB=\angle YDA</math>.
  
== Solution ==
+
== Solution 1 ==
  
 
Note that lines <math>AC, AX</math> are isogonal in <math>\triangle ABD</math>, so an inversion centered at <math>A</math> with power <math>r^2=AB\cdot AD</math> composed with a reflection about the angle bisector of <math>\angle DAB</math> swaps the pairs <math>(D,B)</math> and <math>(C,X)</math>. Thus, <cmath>\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1</cmath>so that <math>ACBD</math> is a harmonic quadrilateral. By symmetry, if <math>Y</math> exists, then <math>(B,D;A,C)=-1</math>. We have shown the two conditions are equivalent, whence both directions follow<math>.\:\blacksquare\:</math>
 
Note that lines <math>AC, AX</math> are isogonal in <math>\triangle ABD</math>, so an inversion centered at <math>A</math> with power <math>r^2=AB\cdot AD</math> composed with a reflection about the angle bisector of <math>\angle DAB</math> swaps the pairs <math>(D,B)</math> and <math>(C,X)</math>. Thus, <cmath>\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1</cmath>so that <math>ACBD</math> is a harmonic quadrilateral. By symmetry, if <math>Y</math> exists, then <math>(B,D;A,C)=-1</math>. We have shown the two conditions are equivalent, whence both directions follow<math>.\:\blacksquare\:</math>
Line 15: Line 15:
 
Therefore, the ratio equals <math>\frac{AD\cdot DC}{DB\cdot BC}.</math>
 
Therefore, the ratio equals <math>\frac{AD\cdot DC}{DB\cdot BC}.</math>
  
Now let <math>Y</math> be a point of <math>AC</math> such that <math>\angle{ABE}=\angle{CBY}</math>. We apply the above identities for <math>Y</math> to get that <math>\frac{CY}{YC}\cdot \frac{CE}{EA}=\left(\frac{CD}{DA}\right)^2</math>. So <math>\angle{CDY}=\angle{EDA}</math>, the converse follows since all our steps are reversible.
+
Now let <math>Y</math> be a point of <math>AC</math> such that <math>\angle{ABE}=\angle{CBY}</math>. We apply the above identities for <math>Y</math> to get that <math>\frac{CY}{YA}\cdot \frac{CE}{EA}=\left(\frac{CD}{DA}\right)^2</math>. So <math>\angle{CDY}=\angle{EDA}</math>, the converse follows since all our steps are reversible.
 +
 
 +
 
 +
Beware that directed angles, or angles <math>mod</math> <math>180</math>, are not standard olympiad material. If you use them, provide a definition.
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:52, 5 September 2017

Problem

Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.

Solution 1

Note that lines $AC, AX$ are isogonal in $\triangle ABD$, so an inversion centered at $A$ with power $r^2=AB\cdot AD$ composed with a reflection about the angle bisector of $\angle DAB$ swaps the pairs $(D,B)$ and $(C,X)$. Thus, \[\frac{AD}{XD}\cdot \frac{XD}{CD}=\frac{AC}{BC}\cdot \frac{AB}{CA}\Longrightarrow (A,C;B,D)=-1\]so that $ACBD$ is a harmonic quadrilateral. By symmetry, if $Y$ exists, then $(B,D;A,C)=-1$. We have shown the two conditions are equivalent, whence both directions follow$.\:\blacksquare\:$

Solution 2

All angles are directed. Note that lines $AC, AX$ are isogonal in $\triangle ABD$ and $CD, CE$ are isogonal in $\triangle CDB$. From the law of sines it follows that

\[\frac{DX}{XB}\cdot \frac{DE}{ED}=\left(\frac{AD}{DB}\right)^2=\left(\frac{DC}{BC}\right)^2.\]

Therefore, the ratio equals $\frac{AD\cdot DC}{DB\cdot BC}.$

Now let $Y$ be a point of $AC$ such that $\angle{ABE}=\angle{CBY}$. We apply the above identities for $Y$ to get that $\frac{CY}{YA}\cdot \frac{CE}{EA}=\left(\frac{CD}{DA}\right)^2$. So $\angle{CDY}=\angle{EDA}$, the converse follows since all our steps are reversible.


Beware that directed angles, or angles $mod$ $180$, are not standard olympiad material. If you use them, provide a definition.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See Also

2015 USAJMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAJMO Problems and Solutions