Difference between revisions of "2015 USAMO Problems/Problem 2"

(Solution)
m (Solution)
Line 3: Line 3:
  
 
===Solution===
 
===Solution===
WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where <math>(1-a)^2+b^2=1</math>. Let angle <XAB=A, which is an acute angle, <math>\tan{A}=t</math>, then <math>X=(1-a,at)</math>.
+
WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where <math>(1-a)^2+b^2=1</math>.
  
Angle <BOS=2A, S=(-cos2A,sin2A).
+
Let angle <math>\angle XAB=A</math>, which is an acute angle, <math>\tan{A}=t</math>, then <math>X=(1-a,at)</math>.
Let M=(u,v), then T=(2u+cos2A, 2v-sin2A)
 
  
The condition TX perpendicular to AX yields (2v-sin2A-at)/(2u+cos2A+a-1)=cotA.     (E1)
+
Angle <math>\angle BOS=2A</math>, <math>S=(-\cos(2A),\sin(2A))</math>.
Use identities (cosA)^2=1/(1+t^2), cos2A=2(cosA)^2-1= 2/(1+t^2) -1, sin2A=2sinAcosA=2t^2/(1+t^2), we obtain 2vt-at^2=2u+a.  (E1')
+
Let <math>M=(u,v)</math>, then <math>T=(2u+\cos(2A), 2v-\sin(2A))</math>.
  
The condition that T is on the circle yields (2u+cos2A)^2+ (2v-sin2A)^2=1, namely vsin2A-ucos2A=u^2+v^2.   (E2)
+
The condition <math>TX \perp AX</math> yields: <math>(2v-\sin(2A)-at)/(2u+\cos(2A)+a-1)=\cot A. </math>    (E1)
  
M is the mid-point on the hypotenuse of triangle STX, hence MS=MX, yielding (u+cos2A)^2+(v-sin2A)^2=(u+a-1)^2+(v-at)^2.  (E3)
+
Use identities <math>(\cos A)^2=1/(1+t^2)</math>, <math>\cos(2A)=2(\cos A)^2-1= 2/(1+t^2) -1</math>, <math>\sin(2A)=2\sin A\cos A=2t^2/(1+t^2)</math>, we obtain <math>2vt-at^2=2u+a</math>.  (E1')
  
Expand (E3), using (E2) to replace 2(vsin2A-ucos2A) with 2(u^2+v^2), and using (E1') to replace a(-2vt+at^2) with -a(2u+a), and we obtain
+
The condition that <math>T</math> is on the circle yields <math>(2u+\cos(2A))^2+ (2v-\sin(2A))^2=1</math>, namely <math>v\sin(2A)-u\cos(2A)=u^2+v^2</math>.  (E2)
 +
 
 +
<math>M</math> is the mid-point on the hypotenuse of triangle <math>STX</math>, hence <math>MS=MX</math>, yielding <math>(u+\cos(2A))^2+(v-\sin(2A))^2=(u+a-1)^2+(v-at)^2</math>.  (E3)
 +
 
 +
Expand (E3), using (E2) to replace <math>2(v\sin(2A)-u\cos(2A))</math> with <math>2(u^2+v^2)</math>, and using (E1') to replace <math>a(-2vt+at^2)</math> with <math>-a(2u+a)</math>, and we obtain
 
<math>u^2-u-a+v^2=0</math>, namely <math>(u-\frac{1}{2})^2+v^2=a+\frac{1}{4}</math>, which is a circle centered at <math>(\frac{1}{2},0)</math> with radius <math>r=\sqrt{a+\frac{1}{4}}</math>.
 
<math>u^2-u-a+v^2=0</math>, namely <math>(u-\frac{1}{2})^2+v^2=a+\frac{1}{4}</math>, which is a circle centered at <math>(\frac{1}{2},0)</math> with radius <math>r=\sqrt{a+\frac{1}{4}}</math>.

Revision as of 17:33, 23 May 2015

Problem

Quadrilateral $APBQ$ is inscribed in circle $\omega$ with $\angle P = \angle Q = 90^{\circ}$ and $AP = AQ < BP$. Let $X$ be a variable point on segment $\overline{PQ}$. Line $AX$ meets $\omega$ again at $S$ (other than $A$). Point $T$ lies on arc $AQB$ of $\omega$ such that $\overline{XT}$ is perpendicular to $\overline{AX}$. Let $M$ denote the midpoint of chord $\overline{ST}$. As $X$ varies on segment $\overline{PQ}$, show that $M$ moves along a circle.

Solution

WLOG, let the circle be the unit circle centered at the origin, $A=(1,0) P=(1-a,b), Q=(1-a,-b)$, where $(1-a)^2+b^2=1$.

Let angle $\angle XAB=A$, which is an acute angle, $\tan{A}=t$, then $X=(1-a,at)$.

Angle $\angle BOS=2A$, $S=(-\cos(2A),\sin(2A))$. Let $M=(u,v)$, then $T=(2u+\cos(2A), 2v-\sin(2A))$.

The condition $TX \perp AX$ yields: $(2v-\sin(2A)-at)/(2u+\cos(2A)+a-1)=\cot A.$ (E1)

Use identities $(\cos A)^2=1/(1+t^2)$, $\cos(2A)=2(\cos A)^2-1= 2/(1+t^2) -1$, $\sin(2A)=2\sin A\cos A=2t^2/(1+t^2)$, we obtain $2vt-at^2=2u+a$. (E1')

The condition that $T$ is on the circle yields $(2u+\cos(2A))^2+ (2v-\sin(2A))^2=1$, namely $v\sin(2A)-u\cos(2A)=u^2+v^2$. (E2)

$M$ is the mid-point on the hypotenuse of triangle $STX$, hence $MS=MX$, yielding $(u+\cos(2A))^2+(v-\sin(2A))^2=(u+a-1)^2+(v-at)^2$. (E3)

Expand (E3), using (E2) to replace $2(v\sin(2A)-u\cos(2A))$ with $2(u^2+v^2)$, and using (E1') to replace $a(-2vt+at^2)$ with $-a(2u+a)$, and we obtain $u^2-u-a+v^2=0$, namely $(u-\frac{1}{2})^2+v^2=a+\frac{1}{4}$, which is a circle centered at $(\frac{1}{2},0)$ with radius $r=\sqrt{a+\frac{1}{4}}$.