2016 AIME II Problems/Problem 10

Revision as of 19:14, 5 March 2017 by Antoncow (talk | contribs) (Solution 1)

Triangle $ABC$ is inscribed in circle $\omega$. Points $P$ and $Q$ are on side $\overline{AB}$ with $AP<AQ$. Rays $CP$ and $CQ$ meet $\omega$ again at $S$ and $T$ (other than $C$), respectively. If $AP=4,PQ=3,QB=6,BT=5,$ and $AS=7$, then $ST=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution 1

[asy] import cse5; pathpen = black; pointpen = black; pointfontsize = 9; size(8cm);  pair A = origin, B = (13,0), P = (4,0), Q = (7,0), 	T = B + 5 dir(220), C = IP(circumcircle(A,B,T),Line(T,Q,-0.1,10)), 	S = IP(circumcircle(A,B,C),Line(C,P,-0.1,10));  Drawing(A--B--C--cycle); D(circumcircle(A,B,C),rgb(0,0.6,1)); DrawPathArray(C--S^^C--T,rgb(1,0.4,0.1)); DrawPathArray(A--S^^B--T,rgb(0,0.4,0)); D(S--T,rgb(1,0.2,0.4));  D("A",A,dir(215)); D("B",B,dir(330)); D("P",P,dir(240)); D("Q",Q,dir(240)); D("T",T,dir(290)); D("C",C,dir(120)); D("S",S,dir(250));  MP("4",(A+P)/2,dir(90)); MP("3",(P+Q)/2,dir(90)); MP("6",(Q+B)/2,dir(90)); MP("5",(B+T)/2,dir(140)); MP("7",(A+S)/2,dir(40)); [/asy] Let $\angle ACP=\alpha$, $\angle PCQ=\beta$, and $\angle QCB=\gamma$. Note that since $\triangle ACQ\sim\triangle TBQ$ we have $\tfrac{AC}{CQ}=\tfrac56$, so by the Ratio Lemma \[\dfrac{AP}{PQ}=\dfrac{AC}{CQ}\cdot\dfrac{\sin\alpha}{\sin\beta}\quad\implies\quad \dfrac{\sin\alpha}{\sin\beta}=\dfrac{24}{15}.\]Similarly, we can deduce $\tfrac{PC}{CB}=\tfrac47$ and hence $\tfrac{\sin\beta}{\sin\gamma}=\tfrac{21}{24}$.

Now Law of Sines on $\triangle ACS$, $\triangle SCT$, and $\triangle TCB$ yields \[\dfrac{AS}{\sin\alpha}=\dfrac{ST}{\sin\beta}=\dfrac{TB}{\sin\gamma}.\]Hence \[\dfrac{ST^2}{\sin^2\beta}=\dfrac{TB\cdot AS}{\sin\alpha\sin\gamma},\]so \[TS^2=TB\cdot AS\left(\dfrac{\sin\beta}{\sin\alpha}\dfrac{\sin\beta}{\sin\gamma}\right)=\dfrac{15\cdot 21}{24^2}\cdot 5\cdot 7=\dfrac{35^2}{8^2}.\]Hence $ST=\tfrac{35}8$ and the requested answer is $35+8=\boxed{43}$.

Edit: Note that the finish is much simpler. Once you get, $\dfrac{AS}{\sin\alpha}=\dfrac{ST}{\sin\beta}$, so $ST=\dfrac{AS*\sin(\beta)}{\sin(\alpha)}=7*(15/24)=35/8$.

Solution 2

Projecting through $C$ we have \[\frac{3}{4}\times \frac{13}{6}=(A,Q;P,B)\stackrel{C}{=}(A,T;S,B)=\frac{ST}{7}\times \frac{13}{5}\] which easily gives $ST=\frac{35}{8}\Longrightarrow 35+8=\boxed{43.}$

Solution 3

By Ptolemy's Theorem applied to quadrilateral $ASTB$, we find \[5\cdot 7+13\cdot ST=AT\cdot BS.\] Therefore, in order to find $ST$, it suffices to find $AT\cdot BS$. We do this using similar triangles.

As $\triangle APS\sim \triangle CPB$, we find \[\frac{4}{PC}=\frac{7}{BC}.\] Therefore, $\frac{BC}{PC}=\frac{7}{4}$.

As $\triangle BQT\sim\triangle CQA$, we find \[\frac{6}{CQ}=\frac{5}{AC}.\] Therefore, $\frac{AC}{CQ}=\frac{5}{6}$.

As $\triangle ATQ\sim\triangle CBQ$, we find \[\frac{AT}{BC}=\frac{7}{CQ}.\] Therefore, $AT=\frac{7\cdot BC}{CQ}$.

As $\triangle BPS\sim \triangle CPA$, we find \[\frac{9}{PC}=\frac{BS}{AC}.\] Therefore, $BS=\frac{9\cdot AC}{PC}$. Thus we find \[AT\cdot BS=\left(\frac{7\cdot BC}{CQ}\right)\left(\frac{9\cdot AC}{PC}\right).\] But now we can substitute in our previously found values for $\frac{BC}{PC}$ and $\frac{AC}{CQ}$, finding \[AT\cdot BS=63\cdot \frac{7}{4}\cdot \frac{5}{6}=\frac{21\cdot 35}{8}.\] Substituting this into our original expression from Ptolemy's Theorem, we find \begin{align*}35+13ST&=\frac{21\cdot 35}{8}\\13ST&=\frac{13\cdot 35}{8}\\ST&=\frac{35}{8}.\end{align*} Thus the answer is $\boxed{43}$.

See also

2016 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS