# Difference between revisions of "2016 AIME II Problems/Problem 3"

(Solution/Problem 3 AIME II) |
m (→Problem 3) |
||

Line 6: | Line 6: | ||

Find the value of <math>|\log_5 x|+|\log_5 y|+|\log_5 z|</math>. | Find the value of <math>|\log_5 x|+|\log_5 y|+|\log_5 z|</math>. | ||

− | ==Solution | + | ==Solution== |

First, we get rid of logs by taking powers: <math>xyz-3+\log_5 x=2^{5}=32</math>, <math>xyz-3+\log_5 y=3^{4}=81</math>, and <math>(xyz-3+\log_5 z)=4^{4}=256</math>. Adding all the equations up and using the <math>\log {xy}=\log {x}+\log{y}</math> property, we have <math>3xyz+\log_5{xyz} = 378</math>, so we have <math>xyz=125</math>. Solving for <math>x,y,z</math> by substituting <math>125</math> for <math>xyz</math> in each equation, we get <math>\log_5 x=-90, \log_5 y=-41, \log_5 z=134</math>, so adding all the absolute values we have <math>90+41+134=\boxed{265}</math>. | First, we get rid of logs by taking powers: <math>xyz-3+\log_5 x=2^{5}=32</math>, <math>xyz-3+\log_5 y=3^{4}=81</math>, and <math>(xyz-3+\log_5 z)=4^{4}=256</math>. Adding all the equations up and using the <math>\log {xy}=\log {x}+\log{y}</math> property, we have <math>3xyz+\log_5{xyz} = 378</math>, so we have <math>xyz=125</math>. Solving for <math>x,y,z</math> by substituting <math>125</math> for <math>xyz</math> in each equation, we get <math>\log_5 x=-90, \log_5 y=-41, \log_5 z=134</math>, so adding all the absolute values we have <math>90+41+134=\boxed{265}</math>. | ||

Solution by Shaddoll | Solution by Shaddoll |

## Revision as of 19:07, 17 March 2016

## Problem 3

Let and be real numbers satisfying the system Find the value of .

## Solution

First, we get rid of logs by taking powers: , , and . Adding all the equations up and using the property, we have , so we have . Solving for by substituting for in each equation, we get , so adding all the absolute values we have .

Solution by Shaddoll