Difference between revisions of "2016 AIME II Problems/Problem 5"
(→Solution 2) |
(→Solution 2) |
||
Line 10: | Line 10: | ||
− | + | First consider the sum of the lengths of the segments for which <math>n-2</math> is odd for each <math>n\geq2</math>. The perimeters of these triangles can be expressed using <math>p</math> and ratios that result because of similar triangles. Considering triangles where <math>n-2</math> is odd, we find that the perimeter for each such <math>n</math> is <math>p(\frac{C_{n-1}C_{n}}{C_{0}B})</math>. Thus, | |
<math>p\sum_{n=1}^{\infty}\frac{C_{2n-1}C_{2n}}{C_{0}B}=6p+C_{0}B</math>. | <math>p\sum_{n=1}^{\infty}\frac{C_{2n-1}C_{2n}}{C_{0}B}=6p+C_{0}B</math>. | ||
Line 17: | Line 17: | ||
Simplifying, | Simplifying, | ||
− | <math>\sum_{n=1}^{\infty}C_{2n-1}C_{2n}=6C_{0}B + \frac{(C_{0}B)^2}{p}=C_{0}B(6+\frac{C_{0}B}{p})</math>. (1) | + | <math>\sum_{n=1}^{\infty}C_{2n-1}C_{2n}=6C_{0}B + \frac{(C_{0}B)^2}{p}=C_{0}B(6+\frac{C_{0}B}{p})</math>. (1) |
Line 27: | Line 27: | ||
Simplifying, | Simplifying, | ||
− | <math>\sum_{n=1}^{\infty}C_{2n-2}C_{2n-1}=C_{0}B(7-\frac{C_{0}B}{p})</math>. (2) | + | <math>\sum_{n=1}^{\infty}C_{2n-2}C_{2n-1}=C_{0}B(7-\frac{C_{0}B}{p})</math>. (2) |
Revision as of 00:05, 19 March 2017
Triangle has a right angle at
. Its side lengths are pariwise relatively prime positive integers, and its perimeter is
. Let
be the foot of the altitude to
, and for
, let
be the foot of the altitude to
in
. The sum
. Find
.
Solution 1
Note that by counting the area in 2 ways, the first altitude is . By similar triangles, the common ratio is
for reach height, so by the geometric series formula, we have
. Multiplying by the denominator and expanding, the equation becomes
. Cancelling
and multiplying by
yields
, so
and
. Checking for Pythagorean triples gives
and
, so
Solution modified/fixed from Shaddoll's solution.
Solution 2
We start by splitting the sum of all into two parts: those where
is odd and those where
is even.
First consider the sum of the lengths of the segments for which is odd for each
. The perimeters of these triangles can be expressed using
and ratios that result because of similar triangles. Considering triangles where
is odd, we find that the perimeter for each such
is
. Thus,
.
Simplifying,
. (1)
Continuing with a similar process for the sum of the lengths of the segments for which is even, the following results:
.
Simplifying,
. (2)
Adding (1) and (2) together, we find that
.
Setting ,
, and
, we can now proceed as in Shaddoll's solution, and our answer is
.
Solution by brightaz
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |