Difference between revisions of "2016 AIME II Problems/Problem 9"

(Solution)
 
m (Solution)
Line 3: Line 3:
 
==Solution==
 
==Solution==
 
Since all the terms of the sequences are integers, and 100 isn't very big, we should just try out the possibilities for <math>b_2</math>. When we get to <math>b_2=9</math> and <math>a_2=91</math>, we have <math>a_4=271</math> and <math>b_4=729</math>, which works, therefore, the answer is <math>b_3+a_3=81+181=\boxed{262}</math>.
 
Since all the terms of the sequences are integers, and 100 isn't very big, we should just try out the possibilities for <math>b_2</math>. When we get to <math>b_2=9</math> and <math>a_2=91</math>, we have <math>a_4=271</math> and <math>b_4=729</math>, which works, therefore, the answer is <math>b_3+a_3=81+181=\boxed{262}</math>.
 +
 +
Solution by Shaddoll

Revision as of 20:24, 17 March 2016

The sequences of positive integers $1,a_2, a_3,...$ and $1,b_2, b_3,...$ are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let $c_n=a_n+b_n$. There is an integer $k$ such that $c_{k-1}=100$ and $c_{k+1}=1000$. Find $c_k$.

Solution

Since all the terms of the sequences are integers, and 100 isn't very big, we should just try out the possibilities for $b_2$. When we get to $b_2=9$ and $a_2=91$, we have $a_4=271$ and $b_4=729$, which works, therefore, the answer is $b_3+a_3=81+181=\boxed{262}$.

Solution by Shaddoll