Difference between revisions of "2016 AIME I Problems/Problem 1"

m (Solution)
m (Solution 1)
Line 2: Line 2:
 
For <math>-1<r<1</math>, let <math>S(r)</math> denote the sum of the geometric series <cmath>12+12r+12r^2+12r^3+\cdots .</cmath>  Let <math>a</math> between <math>-1</math> and <math>1</math> satisfy <math>S(a)S(-a)=2016</math>. Find <math>S(a)+S(-a)</math>.  
 
For <math>-1<r<1</math>, let <math>S(r)</math> denote the sum of the geometric series <cmath>12+12r+12r^2+12r^3+\cdots .</cmath>  Let <math>a</math> between <math>-1</math> and <math>1</math> satisfy <math>S(a)S(-a)=2016</math>. Find <math>S(a)+S(-a)</math>.  
 
==Solution 1==
 
==Solution 1==
We know that <math>S(r)=\frac{12}{1-r}</math>, and <math>S(-r)=\frac{12}{1+r}</math>. Therefore, <math>S(a)S(-a)=\frac{144}{1-a^2}</math>, so <math>2016=\frac{144}{1-a^2}</math>. We can divide out <math>144</math> to get <math>\frac{1}{1-a^2}=14</math>. We see <math>S(a)+S(-a)=\frac{12}{1-a}+\frac{12}{1+a}=\frac{12(1+a)}{1-a^2}+\frac{12(1-a)}{1-a^2}=\frac{24}{1-a^2}=24*14=\fbox{336}</math>
+
We know that <math>S(r)=\frac{12}{1-r}</math>, and <math>S(-r)=\frac{12}{1+r}</math>. Therefore, <math>S(a)S(-a)=\frac{144}{1-a^2}</math>, so <math>2016=\frac{144}{1-a^2}</math>. We can divide out <math>144</math> to get <math>\frac{1}{1-a^2}=14</math>. We see <math>S(a)+S(-a)=\frac{12}{1-a}+\frac{12}{1+a}=\frac{12(1+a)}{1-a^2}+\frac{12(1-a)}{1-a^2}=\frac{24}{1-a^2}=24 \cdot 14=\fbox{336}</math>
  
 
==Solution 2==
 
==Solution 2==

Revision as of 17:05, 22 November 2018

Problem 1

For $-1<r<1$, let $S(r)$ denote the sum of the geometric series \[12+12r+12r^2+12r^3+\cdots .\] Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$. Find $S(a)+S(-a)$.

Solution 1

We know that $S(r)=\frac{12}{1-r}$, and $S(-r)=\frac{12}{1+r}$. Therefore, $S(a)S(-a)=\frac{144}{1-a^2}$, so $2016=\frac{144}{1-a^2}$. We can divide out $144$ to get $\frac{1}{1-a^2}=14$. We see $S(a)+S(-a)=\frac{12}{1-a}+\frac{12}{1+a}=\frac{12(1+a)}{1-a^2}+\frac{12(1-a)}{1-a^2}=\frac{24}{1-a^2}=24 \cdot 14=\fbox{336}$

Solution 2

The sum of an infinite geometric series is $\frac{a}{1-r}\rightarrow \frac{12}{1\mp a}$. The product $S(a)S(-a)=\frac{144}{1-a^2}=2016$ so dividing by $144$ gives $\frac{1}{1-a^2}=14\implies a= \pm \sqrt{\frac{13}{14}}$. $\frac{12}{1-a}+\frac{12}{1+a}=\frac{24}{1-a^2}$, so the answer is $14\cdot 24=\boxed{336}$.

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png