Difference between revisions of "2016 AIME I Problems/Problem 11"

m (Solution 2)
(Solution 2)
Line 10: Line 10:
  
 
==Solution 2==
 
==Solution 2==
From the equation we see that <math>x-1</math> divides <math>P(x)</math> and <math>(x+2)</math> divides <math>P(x+1)</math> so we can conclude that <math>x-1</math> and <math>x+1</math> divide <math>P(x)</math> (if we shift the function left by 1, we get <math>(x-2)P(x) = (x+1)P(x-1)</math>, and from here we can see that <math>x+1</math> divides <math>P(x)</math>). This means that <math>1</math> and <math>-1</math> are roots of <math>P(x)</math>. Plug in <math>x = 0</math> and we see that <math>P(0) = 0</math> so <math>0</math> is also a root.  
+
From the equation we see that <math>x-1</math> divides <math>P(x)</math> and <math>(x+2)</math> divides <math>P(x+1)</math> so we can conclude that <math>x-1</math> and <math>x+1</math> divide <math>P(x)</math> (if we shift the function right by 1, we get <math>(x-2)P(x) = (x+1)P(x-1)</math>, and from here we can see that <math>x+1</math> divides <math>P(x)</math>). This means that <math>1</math> and <math>-1</math> are roots of <math>P(x)</math>. Plug in <math>x = 0</math> and we see that <math>P(0) = 0</math> so <math>0</math> is also a root.  
  
 
Suppose we had another root that is not one of those <math>3</math>. Notice that the equation above indicates that if <math>r</math> is a root then <math>r+1</math> and <math>r-1</math> is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three.  
 
Suppose we had another root that is not one of those <math>3</math>. Notice that the equation above indicates that if <math>r</math> is a root then <math>r+1</math> and <math>r-1</math> is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three.  

Revision as of 13:01, 6 March 2016

Problem

Let $P(x)$ be a nonzero polynomial such that $(x-1)P(x+1)=(x+2)P(x)$ for every real $x$, and $\left(P(2)\right)^2 = P(3)$. Then $P(\tfrac72)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution 1

Plug in $x=1$ to get $(1-1)P(1+1) = 0 = (1+2)P(1) \Rightarrow P(1) = 0$. Plug in $x=0$ to get $(0-1)P(0+1) = (0+2)P(0)\Rightarrow P(0) = -\frac{1}{2}P(1) = 0$. Plug in $x=-1$ to get $(-1-1)P(-1+1) = (-1+2)P(-1)\Rightarrow (-2)P(0)=P(-1)\Rightarrow P(-1) = 0$. So $P(x) = x(x-1)(x+1)Q(x)$ for some polynomial $Q(x)$. Using the initial equation, once again, \[(x-1)P(x+1) = (x+2)P(x)\] \[(x-1)((x+1)(x+1-1)(x+1+1)Q(x+1)) = (x+2)((x)(x-1)(x+1)Q(x))\] \[(x-1)(x+1)(x)(x+2)Q(x+1) = (x+2)(x)(x-1)(x+1)Q(x)\] \[Q(x+1) = Q(x)\] From here, we know that $Q(x) = C$ for a constant $C$, so $P(x) = Cx(x-1)(x+1)$. We know that $\left(P(2)\right)^2 = P(3)$. Plugging those into our definition of $P(x)$: $(C \cdot 2 \cdot (2-1) \cdot (2+1))^2 = C \cdot 3 \cdot (3-1) \cdot (3+1) \Rightarrow (6C)^2 = 24C \Rightarrow 36C^2 - 24C = 0 \Rightarrow C = 0$ or $\frac{2}{3}$. So we know that $P(x) = \frac{2}{3}x(x-1)(x+1)$. So $P(\frac{7}{2}) = \frac{2}{3} \cdot \frac{7}{2} \cdot (\frac{7}{2} - 1) \cdot (\frac{7}{2} + 1) = \frac{105}{4}$. Thus, the answer is $105 + 4 = \boxed{109}$.

Solution 2

From the equation we see that $x-1$ divides $P(x)$ and $(x+2)$ divides $P(x+1)$ so we can conclude that $x-1$ and $x+1$ divide $P(x)$ (if we shift the function right by 1, we get $(x-2)P(x) = (x+1)P(x-1)$, and from here we can see that $x+1$ divides $P(x)$). This means that $1$ and $-1$ are roots of $P(x)$. Plug in $x = 0$ and we see that $P(0) = 0$ so $0$ is also a root.

Suppose we had another root that is not one of those $3$. Notice that the equation above indicates that if $r$ is a root then $r+1$ and $r-1$ is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three.

That means $P(x) = cx(x-1)(x+1)$. We can use $P(2)^2 = P(3)$ to get $c = \frac{2}{3}$. Plugging in $\frac{7}{2}$ is now trivial and we see that it is $\frac{105}{4}$ so our answer is $\boxed{109}$

Solution 3

Although this may not be the most mathematically rigorous answer, we see that $\frac{P(x+1)}{P(x)}=\frac{x+2}{x-1}$. Using a bit of logic, we can make a guess that $P(x+1)$ has a factor of $x+2$, telling us $P(x)$ has a factor of $x+1$. Similarly, we guess that $P(x)$ has a factor of $x-1$, which means $P(x+1)$ has a factor of $x$. Now, since $P(x)$ and $P(x+1)$ have so many factors that are off by one, we may surmise that when you plug $x+1$ into $P(x)$, the factors "shift over," i.e. $P(x)=(A)(A+1)(A+2)...(A+n)$, which goes to $P(x+1)=(A+1)(A+2)(A+3)...(A+n+1)$. This is useful because these, when divided, result in $\frac{P(x+1)}{P(x)}=\frac{A+n+1}{A}$. If $\frac{A+n+1}{A}=\frac{x+2}{x-1}$, then we get $A=x-1$ and $A+n+1=x+2$, $n=2$. This gives us $P(x)=(x-1)x(x+1)$ and $P(x+1)=x(x+1)(x+2)$, and at this point we realize that there has to be some constant $a$ multiplied in front of the factors, which won't affect our fraction $\frac{P(x+1)}{P(x)}=\frac{x+2}{x-1}$ but will give us the correct values of $P(2)$ and $P(3)$. Thus $P(x)=a(x-1)x(x+1)$, and we utilize $P(2)^2=P(3)$ to find $a=\frac{2}{3}$. Evaluating $P \left ( \frac{7}{2} \right )$ is then easy, and we see it equals $\frac{105}{4}$, so the answer is $\boxed{109}$

Solution 4

As above, we find that $P(2)=4$. Now for integers $n\ge 2$, we know that \[P(n+1)=\frac{n+2}{n-1}P(n).\] Applying this repeatedly, we find that \[P(n+1)=\frac{(n+2)!/3!}{(n-1)!}P(2).\] Therefore, as $P(2)=4$, we find $P(n+1)=\frac{2}{3}(n+2)(n+1)n$ for all positive integers $n\ge2$. This cubic polynomial matches the values $P(n+1)$ for infinitely many numbers, hence the two polynomials are identically equal. In particular, $P\left(\frac72\right)=\frac23\cdot\frac92\cdot\frac72\cdot\frac52=\frac{105}{4}$, and the answer is $\boxed{109}$.

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png