Difference between revisions of "2016 AIME I Problems/Problem 6"

(Created page with "In <math>\triangle ABC</math> let <math>I</math> be the center of the inscribed circle, and let the bisector of <math>\angle ACB</math> intersect <math>AB</math> at <math>L</m...")
 
Line 1: Line 1:
 +
==Problem==
 
In <math>\triangle ABC</math> let <math>I</math> be the center of the inscribed circle, and let the bisector of <math>\angle ACB</math> intersect <math>AB</math> at <math>L</math>. The line through <math>C</math> and <math>L</math> intersects the circumscribed circle of <math>\triangle ABC</math> at the two points <math>C</math> and <math>D</math>. If <math>LI=2</math> and <math>LD=3</math>, then <math>IC=\tfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
 
In <math>\triangle ABC</math> let <math>I</math> be the center of the inscribed circle, and let the bisector of <math>\angle ACB</math> intersect <math>AB</math> at <math>L</math>. The line through <math>C</math> and <math>L</math> intersects the circumscribed circle of <math>\triangle ABC</math> at the two points <math>C</math> and <math>D</math>. If <math>LI=2</math> and <math>LD=3</math>, then <math>IC=\tfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
 +
 +
==Solution==
 +
It is well known that <math>DA = DI = DB</math> and so we have <math>DA = DB = 5</math>. Then <math>\triangle DLB \sim \triangle ALC</math> and so <math>\frac{AL}{AC} = \frac{3}{5}</math> and from the angle bisector theorem <math>\frac{CI}{IL} = \frac{5}{3}</math> so <math>CI = \frac{10}{3}</math> and our answer is <math>\boxed{013}</math>

Revision as of 17:07, 4 March 2016

Problem

In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $AB$ at $L$. The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$. If $LI=2$ and $LD=3$, then $IC=\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution

It is well known that $DA = DI = DB$ and so we have $DA = DB = 5$. Then $\triangle DLB \sim \triangle ALC$ and so $\frac{AL}{AC} = \frac{3}{5}$ and from the angle bisector theorem $\frac{CI}{IL} = \frac{5}{3}$ so $CI = \frac{10}{3}$ and our answer is $\boxed{013}$