2016 AMC 10A Problems

Revision as of 17:43, 3 February 2016 by Warrenwangtennis (talk | contribs) (Problem 14)

Problem 1

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

How many ways are there to write 2016 as the sum of twos and threes, ignoring order? (For example, 1008 $\cdot$ 2 + 0 $\cdot$ 3 and 402 $\cdot$ 2 + 404 $\cdot$ 3 are two such ways.)

$\textbf{(A)}\ 236\qquad\textbf{(B)}\ 336\qquad\textbf{(C)}\ 337\qquad\textbf{(D)}\ 403\qquad\textbf{(E)}\ 672$

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Invalid username
Login to AoPS