Difference between revisions of "2016 AMC 10B Problems/Problem 17"

m (Solution)
(Solution)
(20 intermediate revisions by 15 users not shown)
Line 9: Line 9:
 
\textbf{(E)}\ 1680</math>
 
\textbf{(E)}\ 1680</math>
  
==Solution==
+
==Solution 1==
 
Let us call the six sides of our cube <math>a,b,c,d,e,</math> and <math>f</math> (where <math>a</math> is opposite <math>d</math>, <math>c</math> is opposite <math>e</math>, and <math>b</math> is opposite <math>f</math>.
 
Let us call the six sides of our cube <math>a,b,c,d,e,</math> and <math>f</math> (where <math>a</math> is opposite <math>d</math>, <math>c</math> is opposite <math>e</math>, and <math>b</math> is opposite <math>f</math>.
Thus, for the eight vertices, we have the following products: <math>abc</math>,<math>abe</math>,<math>bcd</math>,<math>bde</math>,<math>acf</math>,<math>cdf</math>,<math>cef</math>, and <math>def</math>.
+
Thus, for the eight vertices, we have the following products: <math>abc</math>,<math>abe</math>,<math>bcd</math>,<math>bde</math>,<math>acf</math>,<math>cdf</math>,<math>aef</math>, and <math>def</math>.
 
Let us find the sum of these products:
 
Let us find the sum of these products:
                                <math>abc+abe+bcd+bde+acf+cdf+aef+def</math>
+
<cmath>abc+abe+bcd+bde+acf+cdf+aef+def</cmath>
 
We notice <math>b</math> is a factor of the first four terms, and <math>f</math> is factor is the last four terms.
 
We notice <math>b</math> is a factor of the first four terms, and <math>f</math> is factor is the last four terms.
                                <math>b(ac+ae+cd+de)+f(ac+ae+cd+de)</math>
+
<cmath>b(ac+ae+cd+de)+f(ac+ae+cd+de)</cmath>
 
Now, we can factor even more:
 
Now, we can factor even more:
                                <math>(b+f)(ac+ae+cd+de)</math>
+
 
                                <math>(b+f)(a(c+e)+d(c+e)</math>
+
<cmath>\begin{align*}
                                <math>(b+f)(a+d)(c+e)</math>
+
& (b+f)(ac+ae+cd+de)
We have the product. Notice how the factors are sums of opposite faces. The best sum for this is to make <math>(7+2)</math>,<math>(6+3)</math>, and <math>(5+4)</math> all factors.
+
\\
                              <math> (7+2)(6+3)(5+4)</math>
+
= &(b+f)(a(c+e)+d(c+e))
                                <math>9</math> <math> *</math>   <math> 9</math> <math> *</math>   <math>9</math>
+
\\
                                    <math>           729          </math>
+
= &(b+f)(a+d)(c+e)
Thus our answer is <math>\textbf{(D)}\ 729</math>.
+
\end{align*}</cmath>
 +
We have the product. Notice how the factors are sums of opposite faces. The greatest sum possible is <math>(7+2)</math>,<math>(6+3)</math>, and <math>(5+4)</math> all factors.
 +
<cmath>\begin{align*}
 +
& (7+2)(6+3)(5+4)
 +
\\
 +
= & 9 \cdot 9 \cdot 9
 +
\\
 +
= & 729.
 +
\end{align*}</cmath>
 +
Thus our answer is <math>\textbf{\boxed{(D)729}}</math>.
 +
 
 +
==Solution 2==
 +
We first find the factorization <math>(b+f)(a+d)(c+e)</math> using the method in Solution 1. By using AM-GM, we get, <math>(b+f)(a+d)(c+e) \le \left( \frac{a+b+c+d+e+f}{3} \right)^3</math>. To maximize, the factorization, we get the answer is <math>\left( \frac{27}{3} \right)^3 = \boxed{\textbf{(D)}\ 729}</math>
 +
 
 +
==Solution 3 (Cheap Solution)==
 +
 
 +
 
 +
===Solution===
 +
Create a pairing that seems to intuitively be the optimal value, or, in other words, put a number and it's complement (the number that's the difference of 9 and this number) on opposite sides. <math>1680</math> is way too high using reasonability after you do this so you put <math>\boxed{\textbf{D}}</math>.
 +
 
 +
== Video Solution ==
 +
https://youtu.be/mgEZOXgIZXs?t=117
 +
 
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2016|ab=B|num-b=16|num-a=18}}
 
{{AMC10 box|year=2016|ab=B|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:20, 17 January 2021

Problem

All the numbers $2, 3, 4, 5, 6, 7$ are assigned to the six faces of a cube, one number to each face. For each of the eight vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the three faces that include that vertex. What is the greatest possible value of the sum of these eight products?

$\textbf{(A)}\ 312 \qquad \textbf{(B)}\ 343 \qquad \textbf{(C)}\ 625 \qquad \textbf{(D)}\ 729 \qquad \textbf{(E)}\ 1680$

Solution 1

Let us call the six sides of our cube $a,b,c,d,e,$ and $f$ (where $a$ is opposite $d$, $c$ is opposite $e$, and $b$ is opposite $f$. Thus, for the eight vertices, we have the following products: $abc$,$abe$,$bcd$,$bde$,$acf$,$cdf$,$aef$, and $def$. Let us find the sum of these products: \[abc+abe+bcd+bde+acf+cdf+aef+def\] We notice $b$ is a factor of the first four terms, and $f$ is factor is the last four terms. \[b(ac+ae+cd+de)+f(ac+ae+cd+de)\] Now, we can factor even more:

\begin{align*} & (b+f)(ac+ae+cd+de) \\ = &(b+f)(a(c+e)+d(c+e)) \\ = &(b+f)(a+d)(c+e) \end{align*} We have the product. Notice how the factors are sums of opposite faces. The greatest sum possible is $(7+2)$,$(6+3)$, and $(5+4)$ all factors. \begin{align*} & (7+2)(6+3)(5+4) \\ = & 9 \cdot 9 \cdot 9 \\ = & 729. \end{align*} Thus our answer is $\textbf{\boxed{(D)729}}$.

Solution 2

We first find the factorization $(b+f)(a+d)(c+e)$ using the method in Solution 1. By using AM-GM, we get, $(b+f)(a+d)(c+e) \le \left( \frac{a+b+c+d+e+f}{3} \right)^3$. To maximize, the factorization, we get the answer is $\left( \frac{27}{3} \right)^3 = \boxed{\textbf{(D)}\ 729}$

Solution 3 (Cheap Solution)

Solution

Create a pairing that seems to intuitively be the optimal value, or, in other words, put a number and it's complement (the number that's the difference of 9 and this number) on opposite sides. $1680$ is way too high using reasonability after you do this so you put $\boxed{\textbf{D}}$.

Video Solution

https://youtu.be/mgEZOXgIZXs?t=117

~ pi_is_3.14

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png