# 2016 AMC 10B Problems/Problem 23

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

In regular hexagon $ABCDEF$, points $W$, $X$, $Y$, and $Z$ are chosen on sides $\overline{BC}$, $\overline{CD}$, $\overline{EF}$, and $\overline{FA}$ respectively, so lines $AB$, $ZW$, $YX$, and $ED$ are parallel and equally spaced. What is the ratio of the area of hexagon $WCXYFZ$ to the area of hexagon $ABCDEF$? $\textbf{(A)}\ \frac{1}{3}\qquad\textbf{(B)}\ \frac{10}{27}\qquad\textbf{(C)}\ \frac{11}{27}\qquad\textbf{(D)}\ \frac{4}{9}\qquad\textbf{(E)}\ \frac{13}{27}$

## Solution 1

We draw a diagram to make our work easier: $[asy] pair A,B,C,D,E,F,W,X,Y,Z; A=(0,0); B=(1,0); C=(3/2,sqrt(3)/2); D=(1,sqrt(3)); E=(0,sqrt(3)); F=(-1/2,sqrt(3)/2); W=(4/3,2sqrt(3)/3); X=(4/3,sqrt(3)/3); Y=(-1/3,sqrt(3)/3); Z=(-1/3,2sqrt(3)/3); draw(A--B--C--D--E--F--cycle); draw(W--Z); draw(X--Y); label("A",A,SW); label("B",B,SE); label("C",C,ESE); label("D",D,NE); label("E",E,NW); label("F",F,WSW); label("W",W,ENE); label("X",X,ESE); label("Y",Y,WSW); label("Z",Z,WNW); [/asy]$

Assume that $AB$ is of length $1$. Therefore, the area of $ABCDEF$ is $\frac{3\sqrt 3}2$. To find the area of $WCXYFZ$, we draw $\overline{CF}$, and find the area of the trapezoids $WCFZ$ and $CXYF$. $[asy] pair A,B,C,D,E,F,W,X,Y,Z; A=(0,0); B=(1,0); C=(3/2,sqrt(3)/2); D=(1,sqrt(3)); E=(0,sqrt(3)); F=(-1/2,sqrt(3)/2); W=(4/3,2sqrt(3)/3); X=(4/3,sqrt(3)/3); Y=(-1/3,sqrt(3)/3); Z=(-1/3,2sqrt(3)/3); draw(A--B--C--D--E--F--cycle); draw(W--Z); draw(X--Y); draw(F--C--B--E--D--A); label("A",A,SW); label("B",B,SE); label("C",C,ESE); label("D",D,NE); label("E",E,NW); label("F",F,WSW); label("W",W,ENE); label("X",X,ESE); label("Y",Y,WSW); label("Z",Z,WNW); [/asy]$

From this, we know that $CF=2$. We also know that the combined heights of the trapezoids is $\frac{\sqrt 3}3$, since $\overline{ZW}$ and $\overline{YX}$ are equally spaced, and the height of each of the trapezoids is $\frac{\sqrt 3}6$. From this, we know $\overline{ZW}$ and $\overline{YX}$ are each $\frac 13$ of the way from $\overline{CF}$ to $\overline{DE}$ and $\overline{AB}$, respectively. We know that these are both equal to $\frac 53$.

We find the area of each of the trapezoids, which both happen to be $\frac{11}6 \cdot \frac{\sqrt 3}6=\frac{11\sqrt 3}{36}$, and the combined area is $\frac{11\sqrt 3}{18}$.

We find that $\dfrac{\frac{11\sqrt 3}{18}}{\frac{3\sqrt 3}2}$ is equal to $\frac{22}{54}=\boxed{\textbf{(C)}\ \frac{11}{27}}$.

## Solution 2 $[asy] pair A,B,C,D,E,F,W,X,Y,Z; A=(0,0); B=(1,0); C=(3/2,sqrt(3)/2); D=(1,sqrt(3)); E=(0,sqrt(3)); F=(-1/2,sqrt(3)/2); W=(4/3,2sqrt(3)/3); X=(4/3,sqrt(3)/3); Y=(-1/3,sqrt(3)/3); Z=(-1/3,2sqrt(3)/3); draw(A--B--C--D--E--F--cycle); draw(W--Z); draw(X--Y); draw(F--C--B--E--D--A); label("A",A,SW); label("B",B,SE); label("C",C,ESE); label("D",D,NE); label("E",E,NW); label("F",F,WSW); label("W",W,ENE); label("X",X,ESE); label("Y",Y,WSW); label("Z",Z,WNW); [/asy]$

First, like in the first solution, split the large hexagon into 6 equilateral triangles. Each equilateral triangle can be split into three rows of smaller equilateral triangles. The first row will have one triangle, the second three, the third five. Once you have drawn these lines, it's just a matter of counting triangles. There are $22$ small triangles in hexagon $ZWCXYF$, and $9 \cdot 6 = 54$ small triangles in the whole hexagon.

Thus, the answer is $\frac{22}{54}=\boxed{\textbf{(C)}\ \frac{11}{27}}$.

## Solution 3 (Similar Triangles) $[asy] pair A,B,C,D,E,F,W,X,Y,Z; A=(0,0); B=(1,0); C=(3/2,sqrt(3)/2); D=(1,sqrt(3)); E=(0,sqrt(3)); F=(-1/2,sqrt(3)/2); W=(4/3,2sqrt(3)/3); X=(4/3,sqrt(3)/3); Y=(-1/3,sqrt(3)/3); Z=(-1/3,2sqrt(3)/3); pair G = (0.5, sqrt(3)*3/2); draw(A--B--C--D--E--F--cycle); draw(W--Z); draw(X--Y); draw(E--G--D); draw(F--C); label("A",A,SW); label("B",B,SE); label("C",C,ESE); label("D",D,NE); label("E",E,NW); label("F",F,WSW); label("W",W,ENE); label("X",X,ESE); label("Y",Y,WSW); label("Z",Z,WNW); label("G",G,N); [/asy]$ Extend $\overline{EF}$ and $\overline{CD}$ to meet at point $G$, as shown in the diagram. Then $\triangle GZW \sim \triangle GFC$. Then $[GZW] = \left(\dfrac53\right)^2[GED]$ and $[GFC] = 2^2[GED]$. Subtracting $[GED]$, we find that $[EDWZ] = \dfrac{16}{9}[GED]$ and $[EDCF] = 3[GED]$. Subtracting again, we find that $$[ZWCF] = [EDCF] - [EDWZ] = \dfrac{11}{9}[GED].$$Finally, $$\dfrac{[WCXYFZ]}{[ABCDEF]} = \dfrac{[ZWCF]}{[EDCF]} = \dfrac{\dfrac{11}{9}[GED]}{3[GED]} = \textbf{(C) } \dfrac{11}{27}.$$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 