Difference between revisions of "2016 AMC 10B Problems/Problem 8"

(Solution)
Line 19: Line 19:
  
 
In a very similar fashion, we find that <math>2015^{2016} \equiv 15^{2016} \pmod{100}</math>, which equals <math>225^{1008}</math>. Next, since every power (greater than <math>0</math>) of every number ending in <math>25</math> will end in <math>25</math> (which can easily be verified), we get <math>225^{1008} \equiv 25 \pmod{100}</math>. (In this way, we don't have to worry about the exponent very much.) Finally, <math>2017 \equiv 17 \pmod{100}</math>, and thus <math>2015^{2016}-2017 \equiv 25-17 \equiv 08 \pmod{100}</math>, as above.
 
In a very similar fashion, we find that <math>2015^{2016} \equiv 15^{2016} \pmod{100}</math>, which equals <math>225^{1008}</math>. Next, since every power (greater than <math>0</math>) of every number ending in <math>25</math> will end in <math>25</math> (which can easily be verified), we get <math>225^{1008} \equiv 25 \pmod{100}</math>. (In this way, we don't have to worry about the exponent very much.) Finally, <math>2017 \equiv 17 \pmod{100}</math>, and thus <math>2015^{2016}-2017 \equiv 25-17 \equiv 08 \pmod{100}</math>, as above.
 +
 +
==Video Solution==
 +
https://youtu.be/GVPF6CcCugU
 +
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2016|ab=B|num-b=7|num-a=9}}
 
{{AMC10 box|year=2016|ab=B|num-b=7|num-a=9}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:29, 16 July 2020

Problem

What is the tens digit of $2015^{2016}-2017?$

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 8$

Solution 1

Notice that, for $n\ge 2$, $2015^n\equiv 15^n$ is congruent to $25\pmod{100}$ when $n$ is even and $75\pmod{100}$ when $n$ is odd. (Check for yourself). Since $2016$ is even, $2015^{2016} \equiv 25\pmod{100}$ and $2015^{2016}-2017 \equiv 25 - 17 \equiv \underline{0}8\pmod{100}$.

So the answer is $\textbf{(A)}\ 0$.


Solution 2

In a very similar fashion, we find that $2015^{2016} \equiv 15^{2016} \pmod{100}$, which equals $225^{1008}$. Next, since every power (greater than $0$) of every number ending in $25$ will end in $25$ (which can easily be verified), we get $225^{1008} \equiv 25 \pmod{100}$. (In this way, we don't have to worry about the exponent very much.) Finally, $2017 \equiv 17 \pmod{100}$, and thus $2015^{2016}-2017 \equiv 25-17 \equiv 08 \pmod{100}$, as above.

Video Solution

https://youtu.be/GVPF6CcCugU

~savannahsolver

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png