GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2016 AMC 12A Problems"

(Problem 11)
(added 12)
Line 107: Line 107:
 
==Problem 12==
 
==Problem 12==
  
Problem text
+
In <math>\triangle ABC</math>, <math>AB = 6</math>, <math>BC = 7</math>, and <math>CA = 8</math>. Point <math>D</math> lies on <math>\overline{BC}</math>, and <math>\overline{AD}</math> bisects <math>\angle BAC</math>. Point <math>E</math> lies on <math>\overline{AC}</math>, and <math>\overline{BE}</math> bisects <math>\angle ABC</math>. The bisectors intersect at <math>F</math>. What is the ratio <math>AF</math> : <math>FD</math>?
  
<math>\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing</math>
+
<pre style="color: gray">TODO: Diagram</pre>
 +
 
 +
<math>\textbf{(A)}\ 3:2\qquad\textbf{(B)}\ 5:3\qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 7:3\qquad\textbf{(E)}\ 5:2</math>
  
 
[[2016 AMC 12A  Problems/Problem 12|Solution]]
 
[[2016 AMC 12A  Problems/Problem 12|Solution]]

Revision as of 00:12, 4 February 2016

2016 AMC 12A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $\frac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Solution

Problem 2

For what value of $x$ does $10^x\cdot100^{2x}=1000^5$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 3

The remainder function can be defined for all real numbers $x$ and $y$ with $y\neq 0$ by

$rem(x,y)=x-y\bigg\lfloor \dfrac{x}{y} \bigg\rfloor$,

where $\Big\lfloor \tfrac{x}{y} \Big\rfloor$ denotes the greatest integer less than or equal to $\tfrac{x}{y}$. What is the value of $rem(\tfrac{3}{8} , -\tfrac{2}{5})$ ?

$\textbf{(A)}\ -\dfrac{3}{8}\qquad\textbf{(B)}\ -\dfrac{1}{40}\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ \dfrac{3}{8}\qquad\textbf{(E)}\ \dfrac{31}{40}$

Solution

Problem 4

The mean, median, and mode of the 7 data values $60, 100, x, 40, 50, 200, 90$ are all equal to $x$. What is the value of $x$?

$\textbf{(A)}\ 50\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 100$

Solution

Problem 5

Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two prime numbers (for example, $2016=13+2003$). So far, no one has been able to prove that the conjecture is true, and no one has found a counterexample to show that the conjecture is false. What would a counterexample consist of?

$\textbf{(A)}\ \text{an odd integer greater than } 2 \text{ that can be written as the sum of two prime numbers}\\ \qquad\textbf{(B)}\ \text{an odd integer greater than } 2 \text{ that cannot be written as the sum of two prime numbers}\\ \qquad\textbf{(C)}\ \text{an even integer greater than } 2 \text{ that can be written as the sum of two numbers that are not prime}\\ \qquad\textbf{(D)}\ \text{an even integer greater than } 2 \text{ that can be written as the sum of two prime numbers}\\ \qquad\textbf{(E)}\ \text{an even integer greater than } 2 \text{ that cannot be written as the sum of two prime numbers}$

Solution

Problem 6

A triangular array of 2016 coins in the first row, 2 coins in the second row, 3 coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$ ?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

Problem 7

Which of these describes the graph of $x^2(x+y+1)=y^2(x+y+1)$ ?

$\textbf{(A)}\ \text{two parallel lines}\\ \qquad\textbf{(B)}\ \text{two intersecting lines}\\ \qquad\textbf{(C)}\ \text{three lines that all pass through a common point}\\ \qquad\textbf{(D)}\ \text{three lines that do not all pass through a comment point}\\ \qquad\textbf{(E)}\ \text{a line and a parabola}$

Solution

Problem 8

What is the area of the shaded reigon of the given $8\times 5$ rectangle?

TODO: Diagram

$\textbf{(A)}\ 4\dfrac{3}{4}\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 5\dfrac{1}{4}\qquad\textbf{(D)}\ 6\dfrac{1}{2}\qquad\textbf{(E)}\ 8$

Solution

Problem 9

The five small shaded squares inside this unit square are congruent and have disjoint interiors. The midpoint of each side of the middle square coincides with one of the vertices of the other four small squares as shown. The common side length is $\tfrac{a-\sqrt{2}}{b}$, where $a$ and $b$ are positive integers. What is $a+b$ ?

TODO: Diagram

$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

Solution

Problem 10

Five friends sat in a movie theater in a row containing $5$ seats, numbered $1$ to $5$ from left to right. (The directions "left" and "right" are from the point of view of the people as they sit in the seats.) During the movie Ada went to the lobby to get some popcorn. When she returned, she found that Bea had moved two seats to the right, Ceci had moved one seat to the left, and Dee and Edie had switched seats, leaving an end seat for Ada. In which seat had Ada been sitting before she got up?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 11

Each of the 100 students in a certain summer camp can either sing, dance, or act. Some students have more than one talent, but no student has all three talents. There are 42 students who cannot sing, 65 students who cannot dance, and 29 students who cannot act. How many students have two of these talents?

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 64$

Solution

Problem 12

In $\triangle ABC$, $AB = 6$, $BC = 7$, and $CA = 8$. Point $D$ lies on $\overline{BC}$, and $\overline{AD}$ bisects $\angle BAC$. Point $E$ lies on $\overline{AC}$, and $\overline{BE}$ bisects $\angle ABC$. The bisectors intersect at $F$. What is the ratio $AF$ : $FD$?

TODO: Diagram

$\textbf{(A)}\ 3:2\qquad\textbf{(B)}\ 5:3\qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 7:3\qquad\textbf{(E)}\ 5:2$

Solution


Problem 13

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 14

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 15

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 16

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 17

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 18

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 19

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 20

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 21

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 22

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 23

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 24

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution


Problem 25

Problem text

$\textbf{(A)}\ thing\qquad\textbf{(B)}\ thing\qquad\textbf{(C)}\ thng\qquad\textbf{(D)}\ thing\qquad\textbf{(E)}\ thing$

Solution